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Aligned Probing: Relating Toxic Behavior and Model Internals

Anonymous TACL submission

Abstract

Warning: This paper contains offensive text.

We introduce aligned probing, a novel in-
terpretability framework that aligns the be-
havior of language models (LMs), based on
their outputs, and their internal representa-
tions (internals). Using this framework, we
examine over 20 OLMo, Llama, and Mistral
models, bridging behavioral and internal
perspectives for toxicity for the first time.
Our results show that LMs strongly encode
information about the toxicity level of in-
puts and subsequent outputs, particularly in
lower layers. Focusing on how unique LMs
differ offers both correlative and causal ev-
idence that they generate less toxic output
when strongly encoding information about
the input toxicity. We also highlight the
heterogeneity of toxicity, as model behavior
and internals vary across unique attributes
such as Threat. Finally, four case studies an-
alyzing detoxification, multi-prompt evalu-
ations, model quantization, and pre-training
dynamics underline the practical impact of
aligned probing with further concrete in-
sights. Our findings contribute to a more
holistic understanding of LMs, both within
and beyond the context of toxicity.

1 Introduction

Language models (LMs) may produce toxic text
that contains hate speech, insults, or vulgar-
ity, even when prompted with innocuous text
(Gehman et al., 2020; de Wynter et al., 2024).
Preventing the generation of such toxic language
is an important part of making LMs safer to use
(Kumar et al., 2023). Efforts in this direction in-
clude analyzing the toxicity of model generations
(Ousidhoum et al., 2021; Hartvigsen et al., 2022),
the effects of pre-training data (Groeneveld et al.,

2024; Longpre et al., 2024), and model detoxifica-
tion (Lee et al., 2024; Li et al., 2024; Yang et al.,
2024). However, the scope of such work is limited
as they mostly focus on the behavior (Chang and
Bergen, 2024) of models based on their outputs,
ignoring the model-internal perspective (Hu and
Levy, 2023; Waldis et al., 2024b; Mosbach et al.,
2024), and they treat toxic language as homoge-
neous rather than diverse (Pachinger et al., 2023;
Wen et al., 2023). Thus, we lack a methodological
framework to answer the question:

How do LMs encode information about
toxicity, and what is the interplay be-
tween their internals and behavior?

We address this gap by introducing aligned
probing (Figure 1), a novel interpretability frame-
work (§ 2) that aligns model behavior with internal
representations for toxicity. First, we prompt LMs
with inputs and assess the toxicity of their gener-
ated outputs. Then, during the forward pass, we
extract internal representations at each layer to an-
alyze how models encode toxic language. Specifi-
cally, we use linear probing (Tenney et al., 2019a;
Belinkov, 2022) to train linear models to use these
internals to predict specific properties (like in-
put toxicity). Since probes have limited capacity
and are rigorously validated (Hewitt and Liang,
2019; Voita and Titov, 2020), their prediction per-
formance on held-out data estimates information
strength. Finally, we relate the behavioral and in-
ternal perspectives, examining their interplay.

To account for the heterogeneity of toxic lan-
guage, we consider six fine-grained attributes (§ 3)
and show their varying dependence on specific
words. For example, Threats rely on context,
while Sexually Explicit toxicity is focused on indi-
vidual words. Using aligned probing and the Re-
alToxicPrompts dataset (Gehman et al., 2020), we
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Figure 1: Overview of how aligned probing relates model behavior and their internals regarding toxicity. a) We
study the behavior of models by evaluating the toxicity of model inputs and outputs (tI and tO) regarding six fine-
grained toxicity attributes from the PERSPECTIVE API. b) We extract internal representations (internals) of an
LM (hI and hO). Then, we probe how strong information about input and output toxicity (tI and tO) is encoded
within these internals using four scenarios (Input, Forward, Output, and Backward). c) We correlate these
two perspectives to analyze how behavior and internals interplay regarding toxicity.

evaluate 20+ popular pre-trained and instruction-
tuned LMs, including Llama, OLMo, and Mistral.
We also conduct 100K+ probing runs to assess
model internals, and then systematically analyze
the interplay between behavior and internals.

We first examine high-level insights across LMs
(§ 4), and show that LMs strongly encode infor-
mation about the toxicity of text in lower layers.
This provides an alternative perspective to previ-
ous findings that localize toxicity in upper layers
(Lee et al., 2024). We also find that LMs replicate
and amplify toxicity more than humans as they
strongly encode input toxicity, especially when fo-
cused on single words like Profanities.

Next, we analyze individual LMs in detail (§ 5)
and find that less toxic models encode more infor-
mation about input toxicity. We further establish
that this is a causal relationship (§ 6), showing that
LMs are generally less toxic when they know
more about the toxicity of a given input. Finally,
four case studies (§ 7) reveal that toxicity-related
internal representations are significantly pruned by
DPO detoxification, remain stable across prompt
paraphrasing and model quantization, and emerge
early in pre-training. Our work thus makes the
following methodological and empirical contri-
butions to toxicity and interpretability research:

1. We introduce a novel framework to analyze
the interplay between model behavior and in-
ternals for any textual property.

2. We comprehensively study toxicity with 20
contemporary LMs.

3. We provide in-depth practical insights by
comparing different LMs, multi-prompt eval-
uations, pre-training dynamics, detoxifica-
tion via DPO, and model quantization.

To conclude, we demonstrate that LMs’ behav-
ior and internals strongly rely on the toxicity of
their input. Drawing on these findings, we identify
a fundamental dilemma of using generative LMs:
producing semantically coherent output without
inheriting unwanted input properties like toxicity.

2 Aligned Probing

We introduce aligned probing, an interpretabil-
ity framework that explicitly aligns model behav-
ior and internals to examine their interplay in the
context of toxic language. We first evaluate the
behavior of LMs (§ 2.1), based on the toxicity
scores (tI and tO) of the input (I) and the cor-
responding output (O). Next, we analyze how
strongly LMs encode information about these tox-
icity scores within their internal representations of
the input (hI ) and output (hO), extracted during
generation (§ 2.2). Finally, we correlate the result-
ing information strength (s) with model behavior
to investigate their interplay (§ 2.3). While this
study focuses on toxic text, language that likely
makes people leave a discussion, the method we
present (aligned probing) generalizes to any tex-
tual property describing the input and/or output.

2.1 Evaluating Model Behavior

In toxicity research, language model behavior is
analyzed via the toxicity of generations. Given
the serious implications of toxic language in gen-
erations, the standard evaluation protocol consid-
ers multiple outputs (Oj ∈ O) for a single in-
put (I) to capture the model’s worst-case behavior
(Gehman et al., 2020; Jain et al., 2024; Gallegos
et al., 2024). Following this approach, we gener-
ate 25 samples per input using a temperature of
1.0 and nucleus sampling with p = 0.9 (Holtz-
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man et al., 2020). We then evaluate the toxic-
ity of these generations using the PERSPECTIVE
API1, a widely-used industry standard for toxi-
city assessment (Wen et al., 2023; Liang et al.,
2023; Groeneveld et al., 2024). With these toxi-
city scores, we compute two metrics:

Expected Maximum Toxicity (EMT) We com-
pute the maximum toxicity across multiple gener-
ations for a given input (maxOj∈O tOj ). Since
EMT captures the model’s worst-case behavior,
it answers: How toxic is a language model?

Toxicity Correlation (TC) We compute the
Pearson correlation between the toxicity scores of
the input (tI ) and the corresponding model toxic-
ity (EMT ). This metric quantifies how input tox-
icity relates to generation toxicity, to answer the
question: Do models replicate input toxicity?

2.2 Evaluating Model Internals

To evaluate how models encode information about
toxicity, we examine the layer-wise information
strength of model internals with respect to toxicity
scores. We adopt the probing classifier methodol-
ogy (Tenney et al., 2019a,b; Belinkov, 2022) and
approximate information strength (s) with the per-
formance of a linear model (f ) that maps inter-
nal representations (h[l]) at each layer l to toxicity
scores (t):

f : h[l] 7−→ t (1)

Concretely, we first train2 a probe f to predict t̂
from h[l], where the prediction follows:

t̂ = f(h[l]) (2)

We then approximate the encoding strength (s) as
the Pearson correlation between the predicted (t̂)
and actual (t) toxicity scores. Since the learning
capacity of the probe f is limited, a high corre-
lation suggests that substantial information about
toxicity is encoded in h[l], while a low correlation
indicates weaker encoding. Using this method, we
formulate four scenarios (Figure 1) to analyze the
encoding of input and output toxicity (tI and tO)
within input and output internals (h[l]

I and h
[l]
O ):

Scenario Input f : h
[l]
I 7−→ tI

We first assess how strongly an LM encodes the
toxicity of the input within its internals. Thus,

1https://perspectiveapi.com
2For details on training, see Appendix § A.2.

we probe how strongly the input internals (h[l]
I )

encode information about the input toxicity score
(tI ), yielding the information strength sInp.

Scenario Forward f : h
[l]
O 7−→ tI

Secondly, we examine how much information
about the input’s toxicity is forwarded and re-
tained during generation. To quantify this, we
measure the information strength sFor by probing
whether the input toxicity score (tI ) is encoded
within the internals of the output (h[l]

O ).

Scenario Output f : h
[l]
O 7−→ tO

The third scenario assesses how much informa-
tion LMs encode about the toxicity of their gener-
ations. Thus, we measure the information strength
sOut by probing whether the output toxicity score
(tO) is reflected in the output internals (h[l]

O ).

Scenario Backward f : h
[l]
I 7−→ EMT

Finally, we analyze how much information about
output toxicity an LM encodes within its internal
representations of the input, i.e., we measure the
information strength sBack by probing whether
the model’s internal representations of the input
(h[l]

I ) strongly encode the aggregated expected
maximum toxicity score (EMT) of generations.

2.3 The Interplay of Behavior and Internals
Since we analyze both model behavior and in-
formation strength within internal representations
for the same toxicity attributes, we can ad-
dress: How are the internals of models re-
lated to their behavior? To quantify this inter-
play, we examine the relationship between in-
formation strength in different probing scenar-
ios (si ∈ {sInp, sFor, sOut, sBack}) and the
model’s toxicity. For instance, if we aim to in-
vestigate how strongly the encoding of input tox-
icity within input internals (Scenario Input) re-
lates to model behavior, we compute the Pearson
correlation between the information strength val-
ues across models ( #       »sInp) and their corresponding
expected maximum toxicity scores (

#            »

EMT ):

#       »sInp × #            »

EMT (3)

3 Toxic Language

Following Gehman et al. (2020), we define toxic
text as text which makes people leave a discus-
sion with high probability. As toxicity is a het-
erogeneous phenomenon, we focus on six fine-

https://perspectiveapi.com
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Attribute (a) Example Prompt Avg. tI tI × t
[a]
C

General Toxicity I would rather kill them ... 0.19 ρ = −0.03
Profanity It’s damn easy to sculpt test ... 0.12 ρ = −0.04
Insult Incredibly racist and stupid man ... 0.10 ρ = −0.03
Sexually Explicit My butt muscles are so tight ... 0.08 ρ = 0.17
Identity Attack If you are white trash ... 0.06 ρ = 0.19
Threat If you want to kill ... 0.04 ρ = 0.18

Table 1: Examples of the considered fine-grained toxic
attributes along with the average toxicity scores (tI )
and how these scores correlate with those from the sub-
sequent continuations (tI × tC).

grained attributes: General Toxicity, Identity At-
tack, Insult, Profanity, Threat, and Sexually Ex-
plicit. We quantitatively demonstrate how these
attributes capture distinct aspects of toxic lan-
guage as their score distributions (§ 3.2) and sensi-
tivity to specific tokens (§ 3.3) vary substantially.

3.1 Data

We use the RealToxicPrompts dataset (Gehman
et al., 2020) for our analysis and subsequent ex-
periments. This dataset consists of text prompts
(I) paired with corresponding continuations (C),
each annotated with toxicity scores obtained from
the PERSPECTIVE API. We carefully subsam-
ple the original 100K samples to optimize compu-
tational efficiency while maintaining validity, i.e.,
we iteratively reduce the dataset size as long as the
toxicity scores for all attributes (a) do not differ
statistically significantly (p < 0.05) from the full
dataset. Following this procedure, our final subset
consists of 22K samples.

3.2 Score Distribution

We analyze the score distribution of unique toxi-
city attributes (a ∈ A) within our subset of the
RealToxicPrompts dataset. Among all attributes,
we find the highest average score for General Tox-
icity (0.19), suggesting that this attribute is the
most sensitive to the PERSPECTIVE API scor-
ing. The average score gradually decreases from
Profanity (0.12) to Threat, which has the low-
est average score (0.04). Additionally, toxicity
scores of prompts (tI ) and their continuations (tC)
marginally correlate, with ρ = 0.02 on aver-
age. Thus, the toxicity scores of the prompt and
continuation seem unrelated on average, as also
shown in Gehman et al. (2020). However, compar-
ing unique toxicity attributes reveals that toxicity
scores tend to be replicated within the continuation
for Sexually Explicit (ρ = 0.17), Identity Attack
(ρ = 0.19), and Threat (ρ = 0.18).

Figure 2: Overview of how the toxicity scores of the
considered attributes correlate with each other.

Analyzing the relation among toxicity scores of
unique attributes shows strong correlations across
General Toxicity, Profanity, and Insult (see Fig-
ure 2). In contrast, Threat, Identity Attack, and
Sexually Explicit weakly correlate with others.
This shows that these scores are complementary
and offer a distinct perspective on toxicity.

3.3 Word Sensitivity

We quantify the sensitivity of different toxicity at-
tributes (a ∈ A) to individual words. To this
end, we retrieve the toxicity scores of a prompt (I)
and separately compute scores for its constituent
words {w1, ..., w|I|}. We then define the word
sensitivity for a given attribute a as the difference
between the toxicity score of the prompt (t[a]I ) and
the toxicity score of its most toxic word:

ζ[a] = max
w∈I

t[a]w − t
[a]
I (4)

A high word sensitivity score (ζ[a]) indicates that
attribute a is particularly dependent on individual,
presumably explicit, words. Conversely, a low or
negative ζ[a] suggests that the attribute captures
more contextualized forms of toxic language.

We calculate this word sensitivity for every at-
tribute using all prompts of our dataset. Following
Figure 3, General Toxicity, Profanity, and Sexually
Explicit are more sensitivity to single word as the
average ζ[a] is positive. In contrast, attributes such
as Insult, Identity Attack, and Threat have word
sensitivity scores centered around zero or nega-
tive values, indicating a stronger dependence on
the context of a text. The high variance in Gen-
eral Toxicity suggests that it captures a broader
spectrum of toxic language, whereas attributes like
Sexually Explicit represent more narrowly defined



5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

Confidential TACL submission. DO NOT DISTRIBUTE.

Figure 3: Comparison of the word sensitivity for the
different toxicity attributes. A positive value suggests
that the toxicity of an attribute stems more from a single
words, such as Sexually Explicit. In contrast, a negative
value hints that the toxicity arise from the context as a
whole text has higher scores than single words, as for
the attribute Identity Attack.

Max. Tox. (EMT [a]) Tox. Corr. (TC)
Attribute Toxic Not Toxic Toxic Not Toxic

Average 0.61+0.27 0.25−0.03 0.27+0.30 0.40+0.32

General Toxicity 0.67+0.35 0.38−0.01 0.30+0.35 0.42+0.38

Profanity 0.63+0.36 0.24−0.06 0.26+0.28 0.40+0.42

Insult 0.57+0.29 0.27−0.03 0.22+0.32 0.40+0.41

Sexually Explicit 0.67+0.28 0.20−0.04 0.34+0.27 0.43+0.30

Identity Attack 0.55+0.20 0.18−0.02 0.24+0.25 0.24+0.26

Threat 0.54+0.13 0.20−0.08 0.25+0.36 0.33+0.15

Table 2: Toxicity measures on average and regarding
the specific toxicity attributes (a) for toxic (tI ≥ 0.5)
and not toxic (tI < 0.5) examples aggregated across
the six evaluated LMs. Numbers in subscript show how
the toxicity of these LMs deviates from human behav-
ior. Namely, the difference between EMT and the tox-
icity of the original continuation (tC) and between the
toxicity correlation and the correlation between the tox-
icity of the prompt and continuation (tI × tC).

categories. Together with our toxicity score distri-
bution analysis, these insights further highlight the
heterogeneous nature of toxic language.

4 Toxicity of Language Models

In this section, we apply aligned probing to com-
prehensively evaluate LMs in the context of tox-
icity. We begin by discussing the toxicity of LM
generations (§ 4.1), after which we turn to how
models encode and propagate information about
toxic language internally (§ 4.2). Finally, we con-
nect our behavioral and model-internal insights
and study their interplay (§ 4.3).

Setup We present results aggregated across six
popular pre-trained LMs with 7B to 8B parameters
from the OLMo, Llama, and Mistral families. See
Table 4 in the appendix for more details.

4.1 Behavioral Evaluation
We begin by analyzing the toxicity of LMs based
on their generated text. Overall, our results (Ta-
ble 2) align with previous work (Gehman et al.,
2020) as LMs generally generate text with sub-
stantial toxicity, with EMT of 0.61 for toxic and
0.25 for not toxic prompts. Similar to Jain et al.
(2024), we find that the input toxicity moder-
ately correlates with the subsequent output toxi-
city (TC), demonstrating how LMs replicate input
properties. Below, we detail our main findings:

i) LMs replicate and amplify toxicity more
than human language. We compare model-
generated continuations (tO) with naturally oc-
curring continuations from the RealToxicPrompts
dataset (tC) to analyze differences in toxic lan-
guage between LMs and human language. Our re-
sults show that models generate more toxic text
than humans do, particularly for toxic prompts,
where we observe an increase of +0.27 in EMT.
Furthermore, LM generations replicate input tox-
icity levels beyond those found in human lan-
guage. Interestingly, this deviation from human
language is similar for both toxic (+0.30) and
not toxic (+0.32) prompts, suggesting that LMs
exhibit fundamentally different behavior from hu-
mans, regardless of input toxicity.

ii) LMs are more toxic when single words
convey toxicity. We observe that toxicity lev-
els of LMs vary across the six fine-grained tox-
icity attributes we consider (Table 2). LMs ex-
hibit particularly high toxicity and strongly repli-
cate input toxicity for attributes sensitive to single
words (high ζ in Figure 3). This effect is most
pronounced for Sexually Explicit toxic prompts,
which show the highest toxicity levels, with EMT
and TC scores of 0.67 and 0.34, respectively.
In contrast, LMs generate less toxic output and
replicate input toxicity to a lesser extent for more
context-dependent attributes like Threat and In-
sult. Additionally, we find that the gap between
LMs and human behavior is larger for toxicity that
is more explicit (e.g., +0.36 for Profanity), com-
pared to diffuse attributes like Threat (+0.13).

Summary Our analysis shows that LMs not
only replicate but also amplify the toxicity of input
prompts, particularly for attributes highly sensitive
to single words. This difference among unique
types of toxicity demonstrates that LM behavior
is as heterogeneous as these attributes themselves.
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Figure 4: Results of the four defined scenarios for aligned probing input (t[a]I ) and output (t[a]O ) toxicity, averaged
across the six evaluated LMs and the six toxicity attributes. Error bands show the standard deviation across folds
and seeds, and we report the maximum information for the lower, middle, and upper layers.

4.2 Internal Evaluation

Now that we have analyzed LM behavior, we turn
to how they encode toxic language internally.

iii) Toxic language is encoded in lower layers.
Figure 4 illustrates how strongly (lines) and con-
sistently (bands) LMs encode the toxicity of text
based on the average and standard deviation across
20 probes covering multiple folds and seeds. Our
findings challenge previous research that attributes
toxicity encoding to upper LM layers (Lee et al.,
2024). Instead, we observe three-stages: (1) in-
formation emerges and peaks in the first third of
model layers, (2) gradually declines in the mid-
dle third, and (3) continues decreasing in later
layers while standard deviation increases. No-
tably, the standard deviation (bands) reveals dif-
ferences even in layers with similar information
strength, such as layer one and layer 23, which ex-
hibit deviations of ±0.006 and ±0.038, respec-
tively. These variations suggest inherent differ-
ences across model regions and highlight the ne-
cessity of thorough evaluations. We validate these
insights with alternative probing metrics, namely
selectivity (Hewitt and Liang, 2019) and compres-
sion (Voita and Titov, 2020) - see Figure 17 and
Figure 16 in the appendix.

iv) Information strength varies by toxicity at-
tribute. We further analyze how the encoding of
toxic language differs across specific toxicity at-
tributes. As shown in Figure 5, LMs encode less
information for contextualized attributes, such as
Threat, while attributes with higher word sensitiv-
ity, like General Toxicity, are more strongly en-
coded. This observation aligns with prior work
(Warstadt et al., 2020; Waldis et al., 2024b),
which found that LMs encode word-level proper-
ties, such as morphology, more strongly than con-
textual information. Interestingly, the maximum
information strength for contextualized attributes

occurs in higher layers, such as layer 7 for Iden-
tity Attack. In contrast, attributes sensitive to sin-
gle words, such as Sexually Explicit, peak in lower
layers, which are known to capture more syntactic
features (Tenney et al., 2019a).

v) LMs know more about input toxicity and
propagate this information. Our analysis (Fig-
ure 4) shows that LMs encode more information
about input toxicity (tI ) than output toxicity (tO).
This information strength reaches up to 0.83 in
the Input scenario and 0.73 in Forward, while
it is lower for output toxicity, with a maximum of
0.72 in Output and 0.67 in Backward. These
findings build on previous work (West et al., 2024)
and suggest that LMs struggle to internalize the
meaning of their outputs to toxicity.

At the same time, our results show that LMs not
only encode input toxicity strongly in input inter-
nals (hI ) but also transfer this information to gen-
eration internals (hO). This is particularly clear
when comparing the Forward and Output sce-
narios, where input toxicity (tI ) is encoded almost
as strongly as output toxicity (tO) in the output in-
ternals. Additionally, the delayed rise of tI infor-
mation in output internals supports this transfer: it
takes six layers to exceed an information strength
of 0.60 in the Forward scenario, indicating that
LMs gradually pass this information through the
attention mechanism. This confirms that LMs en-
tangle their generations with input toxicity, em-
phasizing the need to understand better how tox-
icity is encoded and transferred within models.

Summary Our insights reveal that model inter-
nals strongly encode toxic language, especially
input toxicity, and attribute sensitivity to single
words. Additionally, model layers vary in in-
formation strength, clarity, and the encoding of
unique toxicity attributes.
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Figure 5: Maximum information level for lower, mid-
dle, and upper layers regarding the difference toxicity
attributes by probing scenarios. The error bar shows
deviation across four folds and five seeds.

4.3 Correlation of Internals and Behavior

Connecting our behavioral and internal evalua-
tions, we show that information strength is closely
related to observable toxicity when comparing dis-
tinct toxicity attributes. Figure 6 demonstrates that
model toxicity for specific attributes (a) increases
when their internals (hI , hO) encode more in-
formation about a. This correlation is stronger
in the Input, Forward, and Output scenar-
ios, reaching up to ρ = 0.81, ρ = 0.77, and
ρ = 0.77, respectively, while it is lower for
Backward (ρ = 0.69). These findings sug-
gest that encoding input and output toxicity for
a specific attribute (a) more strongly increases
the model toxicity related to a.

5 Comparing Language Models

After evaluating toxicity in general, we next ex-
amine how individual models differ. In § 5.1, we
discuss insights about how the behavior of specific
LMs varies, with a particular focus on the effects
of instruction tuning. We then present findings
on how internals differ (§ 5.2) and finally analyze
the interplay between model internals and behav-
ior across distinct LMs (§ 5.3).

Setup We evaluate pre-trained and instruction-
tuned versions of the following popular contempo-
rary models: OLMo, OLMo-2, Llama-2, Llama-3,
Llama-3.1, and Mistral-v0.3.3 With each model,
we discuss results averaged across the six fine-
grained toxicity attributes.

3See Table 4 of the appendix for details.

Figure 6: Layer-wise correlation (×) between the be-
havior of models regarding the six toxicity attributes
and the corresponding information levels in our four
probing scenarios.

5.1 Behavioral Evaluation

We first analyze how the behavior of unique mod-
els differs in the context of toxicity, with a focus
on how instruction-tuning changes LMs.

i) Instruction-tuning diversifies LMs. Com-
paring LMs reveals only minor differences in tox-
icity among pre-trained LMs (see Table 6 of the
appendix). Notably, OLMo exhibits the lowest
toxicity, highlighting the effectiveness of care-
fully curated, detoxified pre-training data (Groen-
eveld et al., 2024). In contrast, instruction-tuned
LMs show more behavioral variation, especially
for toxic prompts. These differences are particu-
larly pronounced for LMs presumably trained on
distinct instruction corpora, such as Llama-2-Chat
and OLMo-Instruct. As these results underline the
impact of pre-training and instruction-tuning data,
only releasing these corpora would allow us to ex-
amine LMs and their limitations holistically.

ii) Instruction-tuning mitigates toxicity. Con-
sistent with Jain et al. (2024), instruction-tuned
(IT) LMs exhibit lower toxicity than pre-trained
(PT) ones, with an EMT of 0.33 for toxic
prompts and 0.09 for not toxic prompts (see Ta-
ble 3). In fact, the toxicity of IT LMs is more
closely aligned with the toxicity of human lan-
guage for toxic prompts (+0.01) while being
lower (−0.19) for not toxic prompts. Analyz-
ing the correlation with input toxicity (TC) reveals
that IT models effectively suppress high input tox-
icity (0.11 for toxic prompts) while preserving the
low toxicity of not toxic prompts (0.55).

Since IT LMs frequently generate phrases
like as a helpful assistant, this mitigation effect
may partly stem from such formulations. Re-
evaluating generations without such phrases re-
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Max. Tox. (EMT) Tox. Corr. (TC)
Language Model Toxic Not Toxic Toxic Not Toxic

Avg. Pre-Trained (PT) 0.62+0.28 0.25−0.03 0.29+0.33 0.41+0.33

Avg. Instruction-Tuned (IT) 0.33+0.01 0.09−0.19 0.11+0.15 0.52+0.44

Table 3: Toxicity measures averaged regarding the
model type (pre-trained or instruction-tuned). The
numbers in the subscript show how the toxic substances
deviate from human language.

sults in a slight increase in toxicity (see Figure 10
in the appendix). However, their toxicity re-
mains lower than pre-trained LMs, demonstrating
that instruction-tuning reduces LM toxicity with-
out explicit objectives beyond exposure to presum-
ably not toxic preference data. Interestingly, this
adaptation appears more implicit, as toxicity miti-
gation is particularly pronounced for more contex-
tually nuanced attributes such as Threat.

Summary These insights show that instruction-
tuning effectively mitigates toxic language, and
this subsequent stage, after pre-training, shapes
behavioral differences across unique models.

5.2 Internal Evaluation

Next, we analyze how LMs encode toxic language
differently, grouped by whether they are just pre-
trained or also instruction-tuned.

iii) LMs differ in how they encode toxicity in
upper layers. Analyzing how LMs encode toxic
language, we find that they exhibit similar encod-
ing patterns in lower layers but diverge in upper
layers (Figure 7). Notably, as this pattern holds for
both pre-trained (PT) and instruction-tuned (IT)
models, it contrasts with the behavioral similari-
ties across PT models. We assume these upper
layers encode more information about output se-
mantics, potentially resulting in similar toxicity
scores. Moreover, this finding aligns with our pre-
vious finding that regions within LMs differ sub-
stantially (§ 4.2).

Focusing on individual LMs reveals further
model-specific insights. Llama-2 encodes toxic-
ity less strongly and with higher variability than
Llama-3 and Llama-3.1, likely due to its smaller
pre-training dataset (2T vs. 15T+ tokens). Mean-
while, OLMo exhibits high information strength
and low variance, another sign of the high quality
of its pre-training data.

iv) Instruction-tuned LMs encode more infor-
mation about input toxicity. We compare PT

Figure 7: Comparison of how pre-trained (PT) and
instruction-tuned (IT) models encode toxic language
for the four scenarios. The colored area shows how
unique LMs (like Llama, OLMo, or Mistral) deviate
when pre-trained or instruction-tuned.

and IT LMs to assess the impact of instruction-
tuning on model internals. As shown in Fig-
ure 7, instruction-tuning increases the information
strength for input toxicity while reducing it for
output toxicity, particularly in the Forward and
Backward scenarios and in upper layers. Inter-
estingly, the difference between PT and IT LMs
is stronger for toxicity attributes that are less sen-
sitive to individual words, especially Threat and
Insult. These findings suggest that instruction-
tuning primarily affects upper layers, which en-
code broader linguistic context, rather than lower
layers, which focus more on lexical features.

Summary We find that individual LMs encode
information about toxic language more differently
from each other in upper layers, while showing
more similarity in lower layers. This variance is
particularly evident after instruction-tuning, which
adapts LMs to encode more information about the
input and less about the output toxicity.

5.3 Interplay of Internals and Behavior.

Finally, we correlate the average information
strength at each layer with the resulting output tox-
icity (EMT) across different LMs. As shown in
Figure 8, less toxic LMs tend to encode more in-
formation about input toxicity, particularly in the
Forward scenario and for toxic prompts (ρ =
−0.89). Conversely, these less toxic LMs en-
code less information about output toxicity, espe-
cially in the Backward scenario, where we ob-
serve ρ = 0.71 for toxic prompts. These findings
suggest that models are generally less toxic when
they know more about input toxicity, particularly
for attributes with higher word sensitivity, such as
Sexually Explicit or Profanity.
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Figure 8: Layer-wise correlation (×) of the toxicity of
LMs and the average information strength.

6 Correlation or Causation?

So far, we have seen that LMs propagate toxic-
ity from their inputs to their outputs, and their in-
ternals strongly correlate with observable toxicity.
To establish whether this connection between the
internal and behavioral perspectives is causal, we
perform layer-wise interventions. Specifically, we
measure model toxicity when skipping one layer
at a time, approximating the impact of information
encoded at that layer. As these experiments are
computationally expensive, we focus on the pre-
trained OLMo model and focus on layers 2 to 10,
which encode toxic language particularly strongly.

As Figure 9 shows, removing information by
skipping model layers generally increases the tox-
icity of generated text. Specifically, we observe an
average increase of +2.0 in maximum expected
toxicity (EMT) across all intervened layers, with a
peak of +6.2 for layer 7. Relating this to our in-
ternal analysis, layer 7 strongly encodes input tox-
icity in both the input and output. Comparing the
results for different toxicity attributes, we confirm
that the interplay between model internals and be-
havior varies across distinct attributes. As shown
in § 5.3, this interplay is stronger for explicit at-
tributes, where we observe a more pronounced
causal effect. Specifically, removing information
causes up to +16.0 more toxicity for Profanity.
In contrast, more contextualized attributes, such as
Threat, exhibit only a minor increase.

These findings extend previous insights and
suggest information about input toxicity
causally enables language models to generate
less toxic text. At the same time, these insights
underscore the importance of studying causal
mechanisms of LMs (Saphra and Wiegreffe,
2024), particularly for safety aspects (Bereska and
Gavves, 2024), as LMs vary in how they process
distinct toxicity attributes.

Figure 9: Overview of the layer-wise intervention to
examine how information within single layers impact
subsequent toxicity. LM toxicity increases when skip-
ping a layer, hinting that information about toxic lan-
guage helps to produce less toxic text.

7 Case Studies

Finally, we present four case studies with practical
applications of aligned probing, focusing on DPO-
based detoxification (§ 7.1), multi-prompt evalua-
tion (§ 7.2), model quantization (§ 7.3), and pre-
training dynamics (§ 7.4).

7.1 Case Study: Detoxification

We study how model internals change under DPO
detoxification in Figure 12 of the appendix. Our
results confirm this method’s effectiveness in re-
ducing the toxicity of LMs (Li et al., 2024). How-
ever, we find a substantial information loss within
the internals of these models, particularly in the
upper layers. As we observe this information loss
for text properties other than toxicity, like input
length, we see that detoxification via DPO im-
pacts model internals substantially. Therefore, a
more holistic evaluation is indispensable to quan-
tify what abilities alignment methods remove from
models. As such, aligned models can also easily
be unaligned (Lee et al., 2024).

7.2 Case Study: Multi-Prompt Evaluation

We study how multi-prompt evaluation impacts
the internals and behavior of models by prompting
LMs to complete a given text chunk with four dif-
ferent prompt formulations – see Figure 13 of the
appendix. These experiments show that the toxic-
ity of LMs varies across different prompts, while
model internals remain more stable. These results
expand previous work about the crucial entangle-
ment of model behavior and specific instructions
(Mizrahi et al., 2024; Sclar et al., 2024). Our re-
sults show that this variance is visible beyond task-
specific evaluation, and that, in contrast, model in-
ternals reveal fewer deviations.
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7.3 Case Study: Model Quantization
We also study whether evaluating model internals
and behavior vary when we apply quantization
methods to improve efficiency – see Figure 14 of
the appendix. We find that both behavioral and in-
ternal results remain valid and consistent, as we
found only minor deviations when comparing full
precision with half and four bit precision.

7.4 Case Study: Pre-Training Dynamics
We analyze how model behavior and internals
evolve during pre-training by studying six pre-
training checkpoints of OLMo (Groeneveld et al.,
2024) - see Figure 12 of the appendix. These
results show that early in training (100K steps),
models are close to their final toxicity and infor-
mation strength regarding toxic language. After-
ward, we mainly see improvements in the clarity
of the information strength, with lower standard
deviations across folds and seeds after 100K steps.
These observations suggest that aligned probing
can effectively monitor pre-training dynamics.

8 Related Work

Toxicity of Language Models Work on lan-
guage model toxicity primarily focuses on evalu-
ating and modifying model behavior by analyzing
inputs and outputs (Gallegos et al., 2024). For in-
stance, Gehman et al. (2020) examine toxicity in
generations given English prompts, while de Wyn-
ter et al. (2024) and Jain et al. (2024) extend this to
multilingual settings. Wen et al. (2023) go beyond
overt toxicity, investigating implicit toxicity that
is harder for automatic classifiers to detect. An-
other line of research explores the origins of tox-
icity in LMs by analyzing training data. Gehman
et al. (2020) highlight the prevalence of toxic con-
tent in pre-training corpora, and Longpre et al.
(2024) show that filtering for quality and toxicity
can paradoxically lead to toxic degeneration and
poor generalization. Unlike these works, we com-
prehensively evaluate LMs by relating the study of
their behavior and model internals, with different
types of toxic language.

Studying Model Internals Recent interpretabil-
ity research has begun probing toxicity within
model internals. Ousidhoum et al. (2021) first
explored this by using masked language models.
More recent work analyzes and mitigates toxicity
via model merging (Yang et al., 2024), direct pref-
erence optimization (DPO) (Lee et al., 2024; Li

et al., 2024), and knowledge editing (Wang et al.,
2024). Methods such as linear probing, activation
analysis, and causal interventions have been used
to study toxicity mitigation in both English (Lee
et al., 2024) and multilingual models (Li et al.,
2024). While we adopt similar methods, we
contribute a new framework, aligned probing, to
trace toxicity through model internals, enabling a
deeper understanding of how input toxicity is en-
tangled with subsequent model behavior.

Probing Our approach builds on classifier-based
probing, which has been widely studied (Be-
linkov, 2022). Probing classifiers can be diffi-
cult to interpret, leading to refinements such as
control tasks (Hewitt and Liang, 2019; Ravichan-
der et al., 2021), fine-tuning probes (Mos-
bach et al., 2020), information-theoretic perspec-
tives (Voita and Titov, 2020), and behavioral ex-
planations (Elazar et al., 2021). While our study
focuses on toxicity, probing has been applied to
various linguistic properties, including negation
and function words (Kim et al., 2019), grammat-
ical number (Lasri et al., 2022), author demo-
graphics (Lauscher et al., 2022), language iden-
tity (Srinivasan et al., 2023), topic classifica-
tion (Waldis et al., 2024a), and linguistic compe-
tence (Waldis et al., 2024b).

9 Discussion and Conclusion

We present aligned probing, a method to trace
text properties from the model input to the out-
put, and connect these findings to subsequent be-
havior. By applying this method in the context of
toxicity, we evaluate over 20 contemporary mod-
els and demonstrate that they substantially encode
information about toxic language, which crucially
impacts the toxicity of model outputs. Moreover,
our results reveal that model behavior strongly re-
lies on the toxicity of the input, and model in-
ternals strongly encode and propagate information
about this input toxicity. With this substantial de-
pendence on the properties of the input text, we
identify a crucial dilemma of generative models:
We expect them to generate a semantically rele-
vant output given an input prompt without consid-
ering unwanted properties, such as toxicity. Pur-
suing this thought towards more controllable text
generation, we plan to apply aligned probing to
analyze other aspects of generation, like stereotyp-
ical formulations, and examine the nature of other
mitigation methods such as model merging.
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A Appendix

A.1 Limitations

Classifying Toxicity Detecting toxicity is a non-
trivial task as conceptualizations, datasets, and an-
notator attitudes can vary widely (Waseem, 2016;
Waseem et al., 2017; Sap et al., 2022; Pachinger
et al., 2023; Cercas Curry et al., 2024). More-
over, toxicity - as with most linguistic properties -
is highly contextual and can be implicit, making it
difficult to detect (Wen et al., 2023). Even though
we consider fine-grained toxicity attributes, our
use of PERSPECTIVE API4 and probing classi-
fiers may miss forms of toxicity not represented in
upstream datasets, or exhibit biases (Nogara et al.,
2023; Pozzobon et al., 2023).

Beyond English Toxicity Due to space con-
straints, we only demonstrate aligned probing
with English toxicity in this paper, but the frame-
work is broad; it can be applied to any lan-
guage model and any textual property. We em-
phasize that English toxicity is intended as an ex-
ample, and other English textual properties may
be encoded and propagated differently from input
to output through model internals. Additionally,
evaluations of toxicity in non-English languages
are also influenced by whether the data is local-
ized to linguistically and culturally appropriate ex-
amples and can still be affected by English pre-
training data (Jain et al., 2024).

Probing Classifiers One of the fundamental
problems with using probing classifiers is their
limited utility for model explainability. In other
words, just because a model’s representations are
predictive of a property does not mean that the
model is using it (Ravichander et al., 2021; Elazar
et al., 2021; Belinkov, 2022). We address this lim-
itation by correlating probing performance with
actual toxic behavior when presenting our results,
by running causal analyses in addition to correla-
tive analyses, by using control tasks (Hewitt and
Liang, 2019) and evaluating our probing setup
from an information theory perspective (Voita and
Titov, 2020). In future applications of aligned
probing to other text properties, it is important to
contextualize results with these checks as we do.

4An industry standard API providing high performance
in toxicity detection, see results online.

A.2 Experimental Details
Probing Hyperparameters We use fixed hyper-
parameters for training the probes following pre-
vious work (Hewitt and Liang, 2019; Voita and
Titov, 2020). Specifically, we train for 20 epochs,
selecting the optimal one based on development
instances. We use AdamW (Loshchilov and Hut-
ter, 2019) as the optimizer, with a batch size of
16, a learning rate of 0.001, a dropout rate of 0.2,
and a warmup phase covering 10% of the total
steps. Additionally, we set the random seeds to
[0, 1, 2, 3, 4].

Hardware All experiments are conducted on 20
Nvidia RTX A6000 GPUs. Each GPU is equipped
with 48GB of memory and 10,752 CUDA cores.

Considered LMs Table 4 provides an overview
of the language models considered in this study.

https://developers.perspectiveapi.com/s/about-the-api-model-cards?language=en_US&tabset-20254=3
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Model Huggingface Tag Parameters Pre-Training Tokens

OLMo-5k (Groeneveld et al., 2024) allenai/OLMo-7B-hf 7 billion 0.35T tokens
OLMo-100k (Groeneveld et al., 2024) allenai/OLMo-7B-hf 7 billion 0.7T tokens
OLMo-200k (Groeneveld et al., 2024) allenai/OLMo-7B-hf 7 billion 1.05T tokens
OLMo-300k (Groeneveld et al., 2024) allenai/OLMo-7B-hf 7 billion 1.4T tokens
OLMo-400k (Groeneveld et al., 2024) allenai/OLMo-7B-hf 7 billion 1.75T tokens
OLMo-500k (Groeneveld et al., 2024) allenai/OLMo-7B-hf 7 billion 2.1T tokens
OLMo (Groeneveld et al., 2024) allenai/OLMo-7B-hf 7 billion 2.5T tokens
OLMo-Instruct (Groeneveld et al., 2024) allenai/OLMo-7B-Instruct-hf 7 billion 2.5T tokens + 381k instructions
OLMo-2 (OLMo et al., 2025) allenai/OLMo-2-1124-7B 7 billion 4.1T tokens
OLMo-2-Instruct (OLMo et al., 2025) allenai/OLMo-2-1124-7B-Instruct 7 billion 4.1T tokens + 367k instructions
Llama-2 (Touvron et al., 2023) meta-llama/Llama-2-7b-hf 7 billion 2T tokens
Llama-2-Chat (Touvron et al., 2023) meta-llama/Llama-2-7b-chat-hf 7 billion 2T tokens + 1.4M instructions
Llama-2-Detox (Rafailov et al., 2023) BatsResearch/llama2-7b-detox-qlora 7 billion 2T tokens + 25k demonstrations
Llama-3 (Grattafiori et al., 2024) meta-llama/Meta-Llama-3-8B-Instruct 8 billion 15T+ tokens
Llama-3-Instruct (Grattafiori et al., 2024) meta-llama/Meta-Llama-3-8B-Instruct 8 billion 15T+ tokens + unknown instructions
Llama-3-Detox (Rafailov et al., 2023) BatsResearch/llama3-8b-detox-qlora 8 billion 15T+ tokens + 25k demonstrations
Llama-3.1 (Grattafiori et al., 2024) meta-llama/Llama-3.1-8B 8 billion 15T+ tokens
Llama-3.1-Instruct (Grattafiori et al., 2024) meta-llama/Llama-3.1-8B-Instruct 8 billion 15+ tokens + unknown instructions
Mistral-v0.3 (Jiang et al., 2023) mistralai/Mistral-7B-v0.3 7 billion unknown
Mistral-v0.3-Instruct (Jiang et al., 2023) mistralai/Mistral-7B-Instruct-v0.3 7 billion unknown
Aya-23 (Aryabumi et al., 2024) CohereForAI/aya-23-8B 8 billion unknown + 5.7M instructions
Aya-23-Detox (Rafailov et al., 2023) BatsResearch/aya-23-8b-detox-qlora 8 billion unknown + 5.7M instructions + 25k demonstrations

Table 4: Overview of the evaluated models and information about the pre-training and instruction-tuning data.

https://huggingface.co/allenai/OLMo-7B-hf
https://huggingface.co/allenai/OLMo-7B-hf
https://huggingface.co/allenai/OLMo-7B-hf
https://huggingface.co/allenai/OLMo-7B-hf
https://huggingface.co/allenai/OLMo-7B-hf
https://huggingface.co/allenai/OLMo-7B-hf
https://huggingface.co/allenai/OLMo-7B-hf
https://huggingface.co/allenai/OLMo-7B-Instruct-hf
https://huggingface.co/allenai/OLMo-2-1124-7B
https://huggingface.co/allenai/OLMo-2-1124-7B-Instruct
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/BatsResearch/llama2-7b-detox-qlora
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/BatsResearch/llama3-8b-detox-qlora
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/CohereForAI/aya-23-8B
https://huggingface.co/BatsResearch/aya-23-8b-detox-qlora
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Your task is to complete the given text without explanation. Text: {Text}
Complete the following text without explanation. Text: {Text}
Complete a given text without explanation. Text: {Text}
Complete the following text without explanation. Text: {Text}

Table 5: The four prompts we used for the multi-
prompt evaluation.

Max. Tox. (EMT) Tox. Corr. (TC)
Attribute (a) Toxic Not Toxic Toxic Not Toxic

OLMo 0.58+0.24 0.25−0.03 0.22+0.26 0.40+0.32

OLMo-Instruct 0.42+0.08 0.08−0.20 0.22+0.26 0.52+0.44

OLMo-2 0.63+0.29 0.25−0.03 0.28+0.32 0.42+0.34

OLMo-2-Instruct 0.36+0.02 0.08−0.20 0.06+0.10 0.59+0.51

Llama-2 0.63+0.29 0.25−0.03 0.31+0.35 0.40+0.32

Llama-2-Chat 0.21−0.13 0.09−0.19 0.13+0.17 0.41−0.33

Llama-3 0.63+0.29 0.25−0.03 0.31+0.35 0.41+0.33

Llama-3-Instruct 0.38+0.04 0.09−0.19 0.09+0.13 0.57+0.49

Llama-3.1 0.62+0.28 0.25−0.03 0.31+0.35 0.41+0.33

Llama-3.1-Instruct 0.35+0.01 0.08−0.20 0.03+0.07 0.57+0.49

Mistral-v0.3 0.62+0.28 0.25−0.03 0.31+0.35 0.39+0.31

Mistral-v0.3-Instruct 0.25−0.09 0.07−0.21 0.12+0.16 0.44+0.36

Table 6: Detailed behavioral results of the main pre-
trained and instruction-tuned models we consider.

Figure 10: IT LMs (blue line) frequently generate
template text like as a helpful assistant. Therefore, it
remains unclear to what extent the mitigation of toxic
language is due to this non-toxic templatic text. Thus,
we gradually remove generations potentially contain-
ing such passages, represented by particularly frequent
five-grams. This figure shows toxicity increases when
we gradually increase generations containing such top-
k five grams (blue line). As this increase does not
reach the toxicity of pre-trained LMs (red line), we can
assume that instruction-tuning effectively aligns LMs
with the implicit preference for less toxic language.

Figure 11: Comparison of how strongly the inter-
nal representations of pre-trained and detoxified mod-
els encode the number of words in the input within the
input internals (hI ). We observe that detoxification via
DPO results in a substantial loss of information related
to this surface property, indicating that DPO has a sig-
nificant impact on model internals beyond merely re-
ducing toxicity.

Case Study 1: Detoxification

a. Behavioral Results
Max. Tox. (EMT) Tox. Corr. (TC)

Attribute (a) Toxic Not Toxic Toxic Not Toxic

Llama-2 0.63 0.25 0.31 0.40
Llama-2-Chat 0.21 0.09 0.13 0.41
Llama-2-Detox 0.33 0.12 0.02 0.42

Llama-3 0.63 0.25 0.31 0.41
Llama-3-Instruct 0.38 0.09 0.09 0.57
Llama-3-Detox 0.29 0.09 0.13 0.40

Aya-23 0.37 0.14 0.00 0.39
Aya-23-Detox 0.18 0.05 0.00 0.40

b. Internal Results

Figure 12: In this first case study, we examine how
behavior (upper table a.) and internal representations
(lower figure b.) of LMs change when detoxified via
DPO (Rafailov et al., 2023). Therefore, we rely on
the detoxified versions of Llama-2, Llama-3, and Aya-
23, provided by Li et al. (2024), and compare them
with their original counterparts. Focusing on the be-
havioral results (a.), we see the expected drop in toxic-
ity among all the models, for example when comparing
Llama-2 with Llama-2-Detox. Note that since Aya-23
is already instruction-tuned, its general toxicity level
is already lower than the pre-trained models Llama-2
and Llama-3. Interestingly and aligned with results of
§ 5.1, instruction-tuning can reduce the toxicity level of
LMs to a similar level as detoxified ones, particularly
for not toxic prompts. Analyzing how detoxification
impacts internal representations of LMs (b.) reveals a
substantial information loss across all layers and prob-
ing scenarios. As this information loss also occurs for
surface properties, like input length in Figure 11, we
see DPO impacting internal representations of LMs be-
yond the target property (toxicity in text). Moreover,
the particularly pronounced information loss in the up-
per layers suggests that DPO has more of a superficial
impact on LMs, allowing them to be easily unaligned
(Lee et al., 2024).
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Case Study 2: Multi-Prompt Evaluation

a. Behavioral Results
Identity Attack Insult Profanity Sexually Explicit Threat General Toxicity

Model Toxic Not Toxic Toxic Not Toxic Toxic Not Toxic Toxic Not Toxic Toxic Not Toxic Toxic Not Toxic

OLMo-Instruct 0.53±0.03 0.22±0.01 0.46±0.05 0.12±0.0 0.5±0.03 0.14±0.0 0.57±0.02 0.11±0.0 0.48±0.03 0.08±0.0 0.43±0.03 0.08±0.01

OLMo-2-Instruct 0.57±0.03 0.26±0.02 0.54±0.06 0.14±0.02 0.5±0.04 0.16±0.02 0.6±0.03 0.13±0.02 0.47±0.01 0.11±0.01 0.47±0.02 0.12±0.02

Llama-2-chat 0.27±0.03 0.24±0.02 0.13±0.02 0.11±0.01 0.19±0.03 0.13±0.01 0.12±0.04 0.08±0.01 0.11±0.01 0.05±0.01 0.1±0.02 0.08±0.01

Llama-3-Instruct 0.52±0.01 0.27±0.0 0.43±0.03 0.13±0.0 0.46±0.01 0.17±0.0 0.51±0.01 0.11±0.0 0.38±0.01 0.09±0.0 0.45±0.01 0.13±0.0

Llama-3.1-Instruct 0.5±0.07 0.26±0.01 0.42±0.09 0.13±0.01 0.44±0.08 0.15±0.01 0.54±0.06 0.12±0.01 0.38±0.08 0.1±0.01 0.43±0.07 0.13±0.01

Mistral-v0.3-Instruct 0.4±0.02 0.2±0.01 0.26±0.02 0.1±0.0 0.35±0.03 0.11±0.0 0.44±0.03 0.09±0.0 0.36±0.04 0.07±0.0 0.37±0.03 0.07±0.01

b. Internal Results

Figure 13: With this case study, we study how the behavior (a.) and internal representations (b.) of LMs vary
when we prompt them to continue a given text with four different prompt formulations (Table 5). Specifically, we
study the following instruction-tuned models: OLMo-Instruct, OLMo-2-Instruct, Llama-2-Chat, Llama-3-Instruct,
Llama-3.1-Instruct, and Mistral-v0.3-Instruct, Evaluating the behavior (a.) reveals substantial deviation across
these four prompt formulations for toxic prompts, particularly for Llama-3.1-Instruct with up to ±0.09 for In-
sult. Simultaneously, studying the internal representations (b.) reveals a less pronounced effect, from negligible
information deviations (∼ 0.001) of the input toxicity within the input internals (Input) to more substantial
deviations (∼ 0.02) when testing the toxicity of the output within the output internals (Output). These results
suggest that information about the toxicity of the input within the input internals is relatively stably encoded, and
the less stable information within output internals reflects the variation in the model outputs.

Case Study 3: Model Quantization

a. Behavioral Results

Identity Attack Insult Profanity Sexually Explicit Threat General Toxicity
Model Toxic Not Toxic Toxic Not Toxic Toxic Not Toxic Toxic Not Toxic Toxic Not Toxic Toxic Not Toxic

OLMo-Full 0.54 0.18 0.53 0.26 0.57 0.24 0.65 0.20 0.52 0.20 0.64 0.38
OLMo-Half 0.55 0.18 0.54 0.26 0.57 0.24 0.65 0.20 0.53 0.20 0.64 0.38
OLMo-Four-Bit 0.53 0.18 0.54 0.26 0.58 0.24 0.65 0.20 0.52 0.20 0.65 0.38

b. Internal Results

Figure 14: This third case study examines the effect of model quantization on model behavior and internal
representations in the context of toxicity, focusing on the pre-trained OLMo model. Specifically, we compare
the Full version with the Half and Four-Bit precision, quantized using the hugging face library document online.
This analysis reveals neglectable differences for the behavioral (a.) and internal (b.) perspective. These results
demonstrate behavioral and internal evaluations in the context of toxicity remain valid under model quantization,
enabling more efficient experiments with smaller hardware requirements.

https://huggingface.co/docs/transformers/en/main_classes/quantization
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Case Study 4: Pre-Training Dynamics

a. Behavioral Results
Identity Attack Insult Profanity Sexually Explicit Threat General Toxicity

Model Toxic Not Toxic Toxic Not Toxic Toxic Not Toxic Toxic Not Toxic Toxic Not Toxic Toxic Not Toxic

OLMo-5k 0.56 0.36 0.47 0.23 0.43 0.24 0.61 0.21 0.45 0.16 0.48 0.21
OLMo-100k 0.63 0.37 0.57 0.23 0.52 0.25 0.65 0.2 0.53 0.17 0.53 0.2
OLMo-200k 0.64 0.37 0.58 0.24 0.53 0.26 0.66 0.2 0.53 0.18 0.53 0.2
OLMo-300k 0.63 0.37 0.56 0.23 0.52 0.25 0.66 0.2 0.54 0.18 0.53 0.2
OLMo-400k 0.64 0.38 0.57 0.24 0.54 0.26 0.66 0.2 0.54 0.18 0.52 0.2
OLMo-500k 0.64 0.37 0.58 0.24 0.53 0.26 0.67 0.2 0.54 0.17 0.52 0.2
OLMo-Full 0.64 0.38 0.57 0.24 0.54 0.26 0.66 0.2 0.54 0.18 0.52 0.2

b. Internal Results

Figure 15: With this last case study, we analyze how model behavior (a.) and internals (b.) change during pre-
training regarding toxicity. Therefore, we evaluate six intermediate checkpoints of the OLMo pre-training process.
Notable, we find only small changes for the behavioral and internal perspective after 100K training steps. These
results suggest that the early pre-training stage is crucial for the toxicity of LMs and their encoded information
about the toxic language. After these 100K steps, we mainly observe that the encoding strength of toxic language
gets clearer, as the standard deviation across multiple seeds and folds is reduced.

Figure 16: We verify our probing setup by evaluating the selectivity of our probes. Following Hewitt and Liang
(2019), we train and evaluate every probe once with the true label (toxicity score t in this work) and once where we
randomly shuffle the labels t′. Our results show that we achieve a high selectivity, as the gap between the results of
true labels (upper line) and random labels (lower line) is big, indicating that the probe cannot learn random signals.
These results justify the usage of linear probes as sensors to approximate information for our evaluations.

Figure 17: We further verify our probing setups and evaluate the compression of our probes (Voita and Titov,
2020), indicating how well information can be compressed. When compression is high, we assume strong patterns
in the internal representations. These results show a similar trend to our results of an information peak in early
layers, further justifying our probing setup.


