Aligned Probing: Relating Toxic Behavior and Model Internals

Anonymous TACL submission

Abstract

Warning: This paper contains offensive text.

We introduce *aligned probing*, a novel interpretability framework that aligns the behavior of language models (LMs), based on their outputs, and their internal representations (internals). Using this framework, we examine over 20 OLMo, Llama, and Mistral models, bridging behavioral and internal perspectives for toxicity for the first time. Our results show that LMs strongly encode information about the toxicity level of inputs and subsequent outputs, particularly in lower layers. Focusing on how unique LMs differ offers both correlative and causal evidence that they generate less toxic output when strongly encoding information about the input toxicity. We also highlight the heterogeneity of toxicity, as model behavior and internals vary across unique attributes such as Threat. Finally, four case studies analyzing detoxification, multi-prompt evaluations, model quantization, and pre-training dynamics underline the practical impact of aligned probing with further concrete insights. Our findings contribute to a more holistic understanding of LMs, both within and beyond the context of toxicity.

1 Introduction

041

Language models (LMs) may produce toxic text that contains hate speech, insults, or vulgarity, even when prompted with innocuous text (Gehman et al., 2020; de Wynter et al., 2024). Preventing the generation of such *toxic language* is an important part of making LMs safer to use (Kumar et al., 2023). Efforts in this direction include analyzing the toxicity of model generations (Ousidhoum et al., 2021; Hartvigsen et al., 2022), the effects of pre-training data (Groeneveld et al., 2024; Longpre et al., 2024), and model detoxification (Lee et al., 2024; Li et al., 2024; Yang et al., 2024). However, the scope of such work is limited as they mostly focus on the behavior (Chang and Bergen, 2024) of models based on their outputs, ignoring the model-internal perspective (Hu and Levy, 2023; Waldis et al., 2024b; Mosbach et al., 2024), and they treat toxic language as homogeneous rather than diverse (Pachinger et al., 2023; Wen et al., 2023). Thus, we lack a methodological framework to answer the question:

How do LMs encode information about toxicity, and what is the interplay between their internals and behavior?

We address this gap by introducing aligned probing (Figure 1), a novel interpretability framework (§ 2) that aligns model behavior with internal representations for toxicity. First, we prompt LMs with inputs and assess the toxicity of their generated outputs. Then, during the forward pass, we extract internal representations at each layer to analyze how models encode toxic language. Specifically, we use linear probing (Tenney et al., 2019a; Belinkov, 2022) to train linear models to use these internals to predict specific properties (like input toxicity). Since probes have limited capacity and are rigorously validated (Hewitt and Liang, 2019; Voita and Titov, 2020), their prediction performance on held-out data estimates information strength. Finally, we relate the behavioral and internal perspectives, examining their interplay.

To account for the heterogeneity of toxic language, we consider six fine-grained attributes (§ 3) and show their varying dependence on specific words. For example, *Threats* rely on context, while *Sexually Explicit* toxicity is focused on individual words. Using *aligned probing* and the *RealToxicPrompts* dataset (Gehman et al., 2020), we

Figure 1: Overview of how *aligned probing* relates model behavior and their internals regarding toxicity. **a**) We study the behavior of models by evaluating the toxicity of model inputs and outputs $(t_I \text{ and } t_O)$ regarding six finegrained toxicity attributes from the PERSPECTIVE API. **b**) We extract internal representations (internals) of an LM $(h_I \text{ and } h_O)$. Then, we *probe* how strong information about input and output toxicity $(t_I \text{ and } t_O)$ is encoded within these internals using four scenarios (Input, Forward, Output, and Backward). **c**) We correlate these two perspectives to analyze how behavior and internals interplay regarding toxicity.

evaluate 20+ popular pre-trained and instructiontuned LMs, including *Llama*, *OLMo*, and *Mistral*. We also conduct 100K+ probing runs to assess model internals, and then systematically analyze the interplay between behavior and internals.

We first examine high-level insights across LMs (§ 4), and show that LMs strongly encode information about the toxicity of text in lower layers. This provides an alternative perspective to previous findings that localize toxicity in upper layers (Lee et al., 2024). We also find that LMs replicate and amplify toxicity *more than humans* as they strongly encode input toxicity, especially when focused on single words like *Profanities*.

Next, we analyze individual LMs in detail (§ 5) and find that less toxic models encode more information about input toxicity. We further establish that this is a causal relationship (§ 6), showing that **LMs are generally less toxic when they** *know* **more about the toxicity of a given input**. Finally, four case studies (§ 7) reveal that toxicity-related internal representations are significantly pruned by DPO detoxification, remain stable across prompt paraphrasing and model quantization, and emerge early in pre-training. Our work thus makes the following methodological and empirical **contributions** to toxicity and interpretability research:

- 1. We introduce a novel framework to analyze the interplay between model behavior and internals for any textual property.
- 2. We comprehensively study toxicity with 20 contemporary LMs.
- 3. We provide in-depth practical insights by comparing different LMs, multi-prompt evaluations, pre-training dynamics, detoxification via DPO, and model quantization.

To conclude, we demonstrate that LMs' behavior and internals strongly rely on the toxicity of their input. Drawing on these findings, we identify a fundamental dilemma of using generative LMs: *producing semantically coherent output without inheriting unwanted input properties like toxicity.* 154

157

168

187

191

2 Aligned Probing

We introduce *aligned probing*, an interpretability framework that explicitly aligns model behavior and internals to examine their interplay in the context of toxic language. We first evaluate the behavior of LMs (\S 2.1), based on the toxicity scores $(t_I \text{ and } t_O)$ of the input (I) and the corresponding output (O). Next, we analyze how strongly LMs encode information about these toxicity scores within their internal representations of the input (h_I) and output (h_O) , extracted during generation (\S 2.2). Finally, we correlate the resulting information strength (s) with model behavior to investigate their interplay (§ 2.3). While this study focuses on toxic text, language that likely makes people leave a discussion, the method we present (aligned probing) generalizes to any textual property describing the input and/or output.

2.1 Evaluating Model Behavior

In toxicity research, language model behavior is analyzed via the toxicity of generations. Given the serious implications of toxic language in generations, the standard evaluation protocol considers multiple outputs ($O_j \in O$) for a single input (I) to capture the model's worst-case behavior (Gehman et al., 2020; Jain et al., 2024; Gallegos et al., 2024). Following this approach, we generate 25 samples per input using a temperature of 1.0 and nucleus sampling with p = 0.9 (Holtzman et al., 2020). We then evaluate the toxicity of these generations using the PERSPECTIVE API¹, a widely-used industry standard for toxicity assessment (Wen et al., 2023; Liang et al., 2023; Groeneveld et al., 2024). With these toxicity scores, we compute two metrics:

207

210

211

215

217

218

241

242

Expected Maximum Toxicity (EMT) We compute the maximum toxicity across multiple generations for a given input $(\max_{O_j \in O} t_{O_j})$. Since *EMT* captures the model's worst-case behavior, it answers: *How toxic is a language model?*

Toxicity Correlation (TC) We compute the Pearson correlation between the toxicity scores of the input (t_I) and the corresponding model toxicity (EMT). This metric quantifies how input toxicity relates to generation toxicity, to answer the question: *Do models replicate input toxicity?*

2.2 Evaluating Model Internals

To evaluate how models encode information about toxicity, we examine the layer-wise information strength of model internals with respect to toxicity scores. We adopt the *probing classifier* methodology (Tenney et al., 2019a,b; Belinkov, 2022) and approximate information strength (s) with the performance of a linear model (f) that maps internal representations ($h^{[l]}$) at each layer l to toxicity scores (t):

$$f: h^{[l]} \longmapsto t \tag{1}$$

Concretely, we first train² a probe f to predict \hat{t} from $h^{[l]}$, where the prediction follows:

$$\hat{t} = f(h^{[l]}) \tag{2}$$

We then approximate the encoding strength (s) as the Pearson correlation between the predicted (\hat{t}) and actual (t) toxicity scores. Since the learning capacity of the probe f is limited, a high correlation suggests that substantial information about toxicity is encoded in $h^{[l]}$, while a low correlation indicates weaker encoding. Using this method, we formulate four scenarios (Figure 1) to analyze the encoding of input and output toxicity $(t_I \text{ and } t_O)$ within input and output internals $(h_I^{[l]} \text{ and } h_O^{[l]})$:

Scenario Input $f: h_I^{[l]} \longmapsto t_I$

We first assess how strongly an LM encodes the toxicity of the input within its internals. Thus,

we probe how strongly the input internals $(h_I^{[l]})$ encode information about the input toxicity score (t_I) , yielding the information strength s_{Inp} .

251

257

270

271

272

Scenario Forward $f: h_O^{[l]} \mapsto t_I$ Secondly, we examine how much information about the input's toxicity is *forwarded* and retained during generation. To quantify this, we measure the information strength s_{For} by probing whether the input toxicity score (t_I) is encoded within the internals of the output $(h_O^{[l]})$.

Scenario Output $f: h_O^{[l]} \mapsto t_O$

The third scenario assesses how much information LMs encode about the toxicity of their generations. Thus, we measure the information strength s_{Out} by probing whether the output toxicity score (t_O) is reflected in the output internals $(h_O^{[l]})$.

Scenario Backward $f: h_I^{[l]} \longmapsto EMT$

Finally, we analyze how much information about output toxicity an LM encodes within its internal representations of the input, i.e., we measure the information strength s_{Back} by probing whether the model's internal representations of the input $(h_I^{[l]})$ strongly encode the aggregated *expected maximum toxicity* score (EMT) of generations.

2.3 The Interplay of Behavior and Internals

Since we analyze both model behavior and information strength within internal representations for the same toxicity attributes, we can address: *How are the internals of models related to their behavior*? To quantify this interplay, we examine the relationship between information strength in different probing scenarios ($s_i \in \{s_{Inp}, s_{For}, s_{Out}, s_{Back}\}$) and the model's toxicity. For instance, if we aim to investigate how strongly the encoding of input toxicity within input internals (Scenario Input) relates to model behavior, we compute the Pearson correlation between the information strength values across models ($\overline{s_{Inp}}$) and their corresponding expected maximum toxicity scores (\overline{EMT}):

$$\overrightarrow{s_{Inp}} \times \overrightarrow{EMT}$$
 (3)

3 Toxic Language

Following Gehman et al. (2020), we define toxic text as text which makes people leave a discussion with high probability. As toxicity is a heterogeneous phenomenon, we focus on six fine-

¹https://perspectiveapi.com

²For details on training, see Appendix § A.2.

Attribute (a)	Example Prompt	Avg. t _I	$rac{t_I}{t_I} imes t_C^{[a]}$
General Toxicity	I would rather kill them	0.19	$\rho = -0.03$
Profanity	It's damn easy to sculpt test	0.12	$\rho = -0.04$
Insult	Incredibly racist and stupid man	0.10	$\rho = -0.03$
Sexually Explicit	My butt muscles are so tight	0.08	ho = 0.17
Identity Attack	If you are white trash	0.06	$\rho = 0.19$
Threat	If you want to kill	0.04	ho=0.18

Table 1: Examples of the considered fine-grained toxic attributes along with the average toxicity scores (t_I) and how these scores correlate with those from the subsequent continuations $(t_I \times t_C)$.

grained attributes: *General Toxicity, Identity Attack, Insult, Profanity, Threat,* and *Sexually Explicit.* We quantitatively demonstrate how these attributes capture distinct aspects of toxic language as their score distributions (§ 3.2) and sensitivity to specific tokens (§ 3.3) vary substantially.

3.1 Data

We use the *RealToxicPrompts* dataset (Gehman et al., 2020) for our analysis and subsequent experiments. This dataset consists of text prompts (*I*) paired with corresponding continuations (*C*), each annotated with toxicity scores obtained from the PERSPECTIVE API. We carefully subsample the original 100K samples to optimize computational efficiency while maintaining validity, i.e., we iteratively reduce the dataset size as long as the toxicity scores for all attributes (*a*) do not differ statistically significantly (p < 0.05) from the full dataset. Following this procedure, our final subset consists of 22K samples.

3.2 Score Distribution

340

341

We analyze the score distribution of unique toxicity attributes $(a \in A)$ within our subset of the RealToxicPrompts dataset. Among all attributes, we find the highest average score for General Tox*icity* (0.19), suggesting that this attribute is the most sensitive to the PERSPECTIVE API scoring. The average score gradually decreases from Profanity (0.12) to Threat, which has the lowest average score (0.04). Additionally, toxicity scores of prompts (t_I) and their continuations (t_C) marginally correlate, with $\rho = 0.02$ on average. Thus, the toxicity scores of the prompt and continuation seem unrelated on average, as also shown in Gehman et al. (2020). However, comparing unique toxicity attributes reveals that toxicity scores tend to be replicated within the continuation for Sexually Explicit ($\rho = 0.17$), Identity Attack $(\rho = 0.19)$, and *Threat* $(\rho = 0.18)$.

Figure 2: Overview of how the toxicity scores of the considered attributes correlate with each other.

Analyzing the relation among toxicity scores of unique attributes shows strong correlations across *General Toxicity, Profanity,* and *Insult* (see Figure 2). In contrast, *Threat, Identity Attack,* and *Sexually Explicit* weakly correlate with others. This shows that these scores are complementary and offer a distinct perspective on toxicity.

3.3 Word Sensitivity

We quantify the sensitivity of different toxicity attributes $(a \in A)$ to individual words. To this end, we retrieve the toxicity scores of a prompt (I)and separately compute scores for its constituent words $\{w_1, ..., w_{|I|}\}$. We then define the word sensitivity for a given attribute a as the difference between the toxicity score of the prompt $(t_I^{[a]})$ and the toxicity score of its most toxic word:

$$\zeta^{[a]} = \max_{w \in I} t_w^{[a]} - t_I^{[a]} \tag{4}$$

A high word sensitivity score $(\zeta^{[a]})$ indicates that attribute *a* is particularly dependent on individual, presumably explicit, words. Conversely, a low or negative $\zeta^{[a]}$ suggests that the attribute captures more contextualized forms of toxic language.

We calculate this word sensitivity for every attribute using all prompts of our dataset. Following Figure 3, General Toxicity, Profanity, and Sexually Explicit are more sensitivity to single word as the average $\zeta^{[a]}$ is positive. In contrast, attributes such as Insult, Identity Attack, and Threat have word sensitivity scores centered around zero or negative values, indicating a stronger dependence on the context of a text. The high variance in General Toxicity suggests that it captures a broader spectrum of toxic language, whereas attributes like Sexually Explicit represent more narrowly defined

Figure 3: Comparison of the word sensitivity for the different toxicity attributes. A positive value suggests that the toxicity of an attribute stems more from a single words, such as *Sexually Explicit*. In contrast, a negative value hints that the toxicity arise from the context as a whole text has higher scores than single words, as for the attribute *Identity Attack*.

	Max. Tox.	$(EMT^{[a]})$	Tox. Corr. (TC)		
Attribute	Toxic	Not Toxic	Toxic	Not Toxic	
Average	$0.61_{\pm 0.27}$	$0.25_{-0.03}$	$0.27_{\pm 0.30}$	$0.40_{\pm 0.32}$	
General Toxicity	$0.67_{\pm 0.35}$	$0.38_{-0.01}$	$0.30_{\pm 0.35}$	$0.42_{\pm 0.38}$	
Profanity	$0.63_{\pm 0.36}$	$0.24_{-0.06}$	$0.26_{\pm 0.28}$	$0.40_{\pm 0.42}$	
Insult	$0.57_{\pm 0.29}$	$0.27_{-0.03}$	$0.22_{\pm 0.32}$	$0.40_{\pm 0.41}$	
Sexually Explicit	$0.67_{\pm 0.28}$	$0.20_{-0.04}$	$0.34_{\pm 0.27}$	$0.43_{\pm 0.30}$	
Identity Attack	$0.55_{\pm 0.20}$	$0.18_{-0.02}$	$0.24_{\pm 0.25}$	$0.24_{\pm 0.26}$	
Threat	$0.54_{\pm 0.13}$	$0.20_{-0.08}$	$0.25_{\pm 0.36}$	$0.33_{\pm 0.15}$	

Table 2: Toxicity measures on average and regarding the specific toxicity attributes (a) for *toxic* ($t_I \ge 0.5$) and *not toxic* ($t_I < 0.5$) examples aggregated across the six evaluated LMs. Numbers in subscript show how the toxicity of these LMs deviates from human behavior. Namely, the difference between EMT and the toxicity of the original continuation (t_C) and between the toxicity correlation and the correlation between the toxicity of the prompt and continuation ($t_I \times t_C$).

categories. Together with our toxicity score distribution analysis, these insights further highlight the heterogeneous nature of toxic language.

4 Toxicity of Language Models

In this section, we apply *aligned probing* to comprehensively evaluate LMs in the context of toxicity. We begin by discussing the toxicity of LM generations (§ 4.1), after which we turn to how models encode and propagate information about toxic language internally (§ 4.2). Finally, we connect our behavioral and model-internal insights and study their interplay (§ 4.3).

Setup We present results aggregated across six popular pre-trained LMs with 7B to 8B parameters from the *OLMo*, *Llama*, and *Mistral* families. See Table 4 in the appendix for more details.

4.1 Behavioral Evaluation

We begin by analyzing the toxicity of LMs based on their generated text. Overall, our results (Table 2) align with previous work (Gehman et al., 2020) as LMs generally generate text with substantial toxicity, with EMT of **0.61** for *toxic* and **0.25** for *not toxic* prompts. Similar to Jain et al. (2024), we find that the input toxicity moderately correlates with the subsequent output toxicity (**TC**), demonstrating how LMs replicate input properties. Below, we detail our main findings:

453

455

456

457

458

459

461

465

467

469

470

471

472

473

474

475

476

477

478

479

482

487

490

491

492

494

i) LMs replicate and amplify toxicity more than human language. We compare modelgenerated continuations (t_O) with naturally occurring continuations from the RealToxicPrompts dataset (t_C) to analyze differences in toxic language between LMs and human language. Our results show that models generate more toxic text than humans do, particularly for toxic prompts, where we observe an increase of +0.27 in EMT. Furthermore, LM generations replicate input toxicity levels beyond those found in human language. Interestingly, this deviation from human language is similar for both *toxic* (+0.30) and *not toxic* (+0.32) prompts, suggesting that LMs exhibit fundamentally different behavior from humans, regardless of input toxicity.

ii) LMs are more toxic when single words convey toxicity. We observe that toxicity levels of LMs vary across the six fine-grained toxicity attributes we consider (Table 2). LMs exhibit particularly high toxicity and strongly replicate input toxicity for attributes sensitive to single words (high ζ in Figure 3). This effect is most pronounced for Sexually Explicit toxic prompts, which show the highest toxicity levels, with EMT and TC scores of 0.67 and 0.34, respectively. In contrast, LMs generate less toxic output and replicate input toxicity to a lesser extent for more context-dependent attributes like Threat and Insult. Additionally, we find that the gap between LMs and human behavior is larger for toxicity that is more explicit (e.g., +0.36 for *Profanity*), compared to diffuse attributes like *Threat* (+0.13).

Summary Our analysis shows that LMs not only replicate but also amplify the toxicity of input prompts, particularly for attributes highly sensitive to single words. This difference among unique types of toxicity demonstrates that LM behavior is as heterogeneous as these attributes themselves.

408

410

411

412

413

414

415

416

417

418

419

421

422

423

494

426

428

430

431

432

433

434

436

437

439

441

445

Confidential TACL submission. DO NOT DISTRIBUTE.

Figure 4: Results of the four defined scenarios for *aligned probing* input $(t_I^{[a]})$ and output $(t_O^{[a]})$ toxicity, averaged across the six evaluated LMs and the six toxicity attributes. Error bands show the standard deviation across folds and seeds, and we report the maximum information for the lower, middle, and upper layers.

4.2 Internal Evaluation

Now that we have analyzed LM behavior, we turn to how they encode toxic language internally.

iii) Toxic language is encoded in lower layers. Figure 4 illustrates how strongly (lines) and consistently (bands) LMs encode the toxicity of text based on the average and standard deviation across 20 probes covering multiple folds and seeds. Our findings challenge previous research that attributes toxicity encoding to upper LM layers (Lee et al., 2024). Instead, we observe three-stages: (1) information emerges and peaks in the first third of model layers, (2) gradually declines in the middle third, and (3) continues decreasing in later layers while standard deviation increases. Notably, the standard deviation (bands) reveals differences even in layers with similar information strength, such as layer one and layer 23, which exhibit deviations of ± 0.006 and ± 0.038 , respectively. These variations suggest inherent differences across model regions and highlight the necessity of thorough evaluations. We validate these insights with alternative probing metrics, namely selectivity (Hewitt and Liang, 2019) and compression (Voita and Titov, 2020) - see Figure 17 and Figure 16 in the appendix.

iv) Information strength varies by toxicity attribute. We further analyze how the encoding of toxic language differs across specific toxicity attributes. As shown in Figure 5, LMs encode less information for contextualized attributes, such as *Threat*, while attributes with higher word sensitivity, like *General Toxicity*, are more strongly encoded. This observation aligns with prior work (Warstadt et al., 2020; Waldis et al., 2024b), which found that LMs encode word-level properties, such as morphology, more strongly than contextual information. Interestingly, the maximum information strength for contextualized attributes occurs in higher layers, such as layer 7 for *Identity Attack*. In contrast, attributes sensitive to single words, such as *Sexually Explicit*, peak in lower layers, which are known to capture more syntactic features (Tenney et al., 2019a). 557

v) LMs know more about input toxicity and propagate this information. Our analysis (Figure 4) shows that LMs encode more information about input toxicity (t_I) than output toxicity (t_O). This information strength reaches up to **0.83** in the Input scenario and **0.73** in Forward, while it is lower for output toxicity, with a maximum of **0.72** in Output and **0.67** in Backward. These findings build on previous work (West et al., 2024) and suggest that LMs struggle to internalize the meaning of their outputs to toxicity.

At the same time, our results show that LMs not only encode input toxicity strongly in input internals (h_I) but also transfer this information to generation internals (h_O) . This is particularly clear when comparing the Forward and Output scenarios, where input toxicity (t_I) is encoded almost as strongly as output toxicity (t_0) in the output internals. Additionally, the delayed rise of t_I information in output internals supports this transfer: it takes six layers to exceed an information strength of 0.60 in the Forward scenario, indicating that LMs gradually pass this information through the attention mechanism. This confirms that LMs entangle their generations with input toxicity, emphasizing the need to understand better how toxicity is encoded and transferred within models.

Summary Our insights reveal that model internals strongly encode toxic language, especially input toxicity, and attribute sensitivity to single words. Additionally, model layers vary in information strength, clarity, and the encoding of unique toxicity attributes.

611

dle, and *upper* layers regarding the difference toxicity attributes by probing scenarios. The error bar shows deviation across four folds and five seeds.

4.3 Correlation of Internals and Behavior

Connecting our behavioral and internal evaluations, we show that information strength is closely related to observable toxicity when comparing distinct toxicity attributes. Figure 6 demonstrates that model toxicity for specific attributes (*a*) increases when their internals (h_I , h_O) encode more information about *a*. This correlation is stronger in the Input, Forward, and Output scenarios, reaching up to $\rho = 0.81$, $\rho = 0.77$, and $\rho = 0.77$, respectively, while it is lower for Backward ($\rho = 0.69$). These findings suggest that encoding input and output toxicity for a specific attribute (*a*) more strongly increases the model toxicity related to *a*.

5 Comparing Language Models

After evaluating toxicity in general, we next examine how individual models differ. In § 5.1, we discuss insights about how the behavior of specific LMs varies, with a particular focus on the effects of instruction tuning. We then present findings on how internals differ (§ 5.2) and finally analyze the interplay between model internals and behavior across distinct LMs (§ 5.3).

Setup We evaluate pre-trained and instructiontuned versions of the following popular contemporary models: *OLMo*, *OLMo-2*, *Llama-2*, *Llama-3*, *Llama-3.1*, and *Mistral-v0.3.*³ With each model, we discuss results averaged across the six finegrained toxicity attributes.

³See Table 4 of the appendix for details.

Figure 6: Layer-wise correlation (\times) between the behavior of models regarding the six toxicity attributes and the corresponding information levels in our four probing scenarios.

5.1 Behavioral Evaluation

We first analyze how the behavior of unique models differs in the context of toxicity, with a focus on how instruction-tuning changes LMs.

i) Instruction-tuning diversifies LMs. Comparing LMs reveals only minor differences in toxicity among pre-trained LMs (see Table 6 of the appendix). Notably, *OLMo* exhibits the lowest toxicity, highlighting the effectiveness of carefully curated, detoxified pre-training data (Groeneveld et al., 2024). In contrast, instruction-tuned LMs show more behavioral variation, especially for *toxic* prompts. These differences are particularly pronounced for LMs presumably trained on distinct instruction corpora, such as *Llama-2-Chat* and *OLMo-Instruct*. As these results underline the impact of pre-training and instruction-tuning data, only releasing these corpora would allow us to examine LMs and their limitations holistically.

ii) Instruction-tuning mitigates toxicity. Consistent with Jain et al. (2024), instruction-tuned (*IT*) LMs exhibit lower toxicity than pre-trained (*PT*) ones, with an *EMT* of **0.33** for *toxic* prompts and **0.09** for *not toxic* prompts (see Table 3). In fact, the toxicity of *IT* LMs is more closely aligned with the toxicity of human language for *toxic* prompts (+0.01) while being lower (-0.19) for *not toxic* prompts. Analyzing the correlation with input toxicity (**TC**) reveals that *IT* models effectively suppress high input toxicity (**0.11** for *toxic* prompts (**0.55**).

Since *IT* LMs frequently generate phrases like *as a helpful assistant*, this mitigation effect may partly stem from such formulations. Reevaluating generations without such phrases re-

	Max. To:	x. (EMT)	Tox. Corr. (TC)		
Language Model	Toxic	Not Toxic	Toxic	Not Toxic	
Avg. Pre-Trained (PT) Avg. Instruction-Tuned (IT)	$\begin{array}{c} 0.62_{+0.28} \\ 0.33_{+0.01} \end{array}$	$0.25_{-0.03} \\ 0.09_{-0.19}$	$\begin{array}{c} 0.29_{+0.33} \\ 0.11_{+0.15} \end{array}$	$0.41_{\pm 0.33}\\0.52_{\pm 0.44}$	

Table 3: Toxicity measures averaged regarding the model type (*pre-trained* or *instruction-tuned*). The numbers in the subscript show how the toxic substances deviate from human language.

sults in a slight increase in toxicity (see Figure 10 in the appendix). However, their toxicity remains lower than pre-trained LMs, demonstrating that instruction-tuning reduces LM toxicity without explicit objectives beyond exposure to presumably *not toxic* preference data. Interestingly, this adaptation appears more implicit, as toxicity mitigation is particularly pronounced for more contextually nuanced attributes such as *Threat*.

Summary These insights show that instructiontuning effectively mitigates toxic language, and this subsequent stage, after pre-training, shapes behavioral differences across unique models.

5.2 Internal Evaluation

Next, we analyze how LMs encode toxic language differently, grouped by whether they are just pre-trained or also instruction-tuned.

iii) LMs differ in how they encode toxicity in upper layers. Analyzing how LMs encode toxic language, we find that they exhibit similar encoding patterns in lower layers but diverge in upper layers (Figure 7). Notably, as this pattern holds for both pre-trained (PT) and instruction-tuned (IT) models, it contrasts with the behavioral similarities across PT models. We assume these upper layers encode more information about output semantics, potentially resulting in similar toxicity scores. Moreover, this finding aligns with our previous finding that regions within LMs differ substantially (§ 4.2).

Focusing on individual LMs reveals further model-specific insights. *Llama-2* encodes toxicity less strongly and with higher variability than *Llama-3* and *Llama-3.1*, likely due to its smaller pre-training dataset (2T vs. 15T+ tokens). Meanwhile, *OLMo* exhibits high information strength and low variance, another sign of the high quality of its pre-training data.

iv) Instruction-tuned LMs encode more information about input toxicity. We compare *PT*

Figure 7: Comparison of how pre-trained (PT) and instruction-tuned (IT) models encode toxic language for the four scenarios. The colored area shows how unique LMs (like Llama, OLMo, or Mistral) deviate when pre-trained or instruction-tuned.

757

758

791

792

and *IT* LMs to assess the impact of instructiontuning on model internals. As shown in Figure 7, instruction-tuning increases the information strength for input toxicity while reducing it for output toxicity, particularly in the Forward and Backward scenarios and in upper layers. Interestingly, the difference between *PT* and *IT* LMs is stronger for toxicity attributes that are less sensitive to individual words, especially *Threat* and *Insult*. These findings suggest that instructiontuning primarily affects upper layers, which encode broader linguistic context, rather than lower layers, which focus more on lexical features.

Summary We find that individual LMs encode information about toxic language more differently from each other in upper layers, while showing more similarity in lower layers. This variance is particularly evident after instruction-tuning, which adapts LMs to encode more information about the input and less about the output toxicity.

5.3 Interplay of Internals and Behavior.

Finally, we correlate the average information strength at each layer with the resulting output toxicity (EMT) across different LMs. As shown in Figure 8, less toxic LMs tend to encode more information about input toxicity, particularly in the Forward scenario and for *toxic* prompts ($\rho = -0.89$). Conversely, these less toxic LMs encode less information about output toxicity, especially in the Backward scenario, where we observe $\rho = 0.71$ for *toxic* prompts. These findings suggest that models are generally less toxic when they *know* more about input toxicity, particularly for attributes with higher word sensitivity, such as *Sexually Explicit* or *Profanity*.

Figure 8: Layer-wise correlation (\times) of the toxicity of LMs and the average information strength.

6 Correlation or Causation?

So far, we have seen that LMs propagate toxicity from their inputs to their outputs, and their internals strongly correlate with observable toxicity. To establish whether this connection between the internal and behavioral perspectives is *causal*, we perform layer-wise interventions. Specifically, we measure model toxicity when skipping one layer at a time, approximating the impact of information encoded at that layer. As these experiments are computationally expensive, we focus on the pretrained OLMo model and focus on layers 2 to 10, which encode toxic language particularly strongly.

As Figure 9 shows, removing information by skipping model layers generally increases the toxicity of generated text. Specifically, we observe an average increase of +2.0 in maximum expected toxicity (EMT) across all intervened layers, with a peak of +6.2 for layer 7. Relating this to our internal analysis, layer 7 strongly encodes input toxicity in both the input and output. Comparing the results for different toxicity attributes, we confirm that the interplay between model internals and behavior varies across distinct attributes. As shown in § 5.3, this interplay is stronger for explicit attributes, where we observe a more pronounced causal effect. Specifically, removing information causes up to +16.0 more toxicity for *Profanity*. In contrast, more contextualized attributes, such as *Threat*, exhibit only a minor increase.

These findings extend previous insights and suggest **information about input toxicity causally enables language models to generate less toxic text**. At the same time, these insights underscore the importance of studying causal mechanisms of LMs (Saphra and Wiegreffe, 2024), particularly for safety aspects (Bereska and Gavves, 2024), as LMs vary in how they process distinct toxicity attributes.

857

871

892

7 Case Studies

Finally, we present four case studies with practical applications of *aligned probing*, focusing on DPO-based detoxification (§ 7.1), multi-prompt evaluation (§ 7.2), model quantization (§ 7.3), and pre-training dynamics (§ 7.4).

7.1 Case Study: Detoxification

We study how model internals change under DPO detoxification in Figure 12 of the appendix. Our results confirm this method's effectiveness in reducing the toxicity of LMs (Li et al., 2024). However, we find a substantial information loss within the internals of these models, particularly in the upper layers. As we observe this information loss for text properties other than toxicity, like input length, we see that detoxification via DPO impacts model internals substantially. Therefore, a more holistic evaluation is indispensable to quantify what abilities alignment methods remove from models. As such, aligned models can also easily be unaligned (Lee et al., 2024).

7.2 Case Study: Multi-Prompt Evaluation

We study how multi-prompt evaluation impacts the internals and behavior of models by prompting LMs to complete a given text chunk with four different prompt formulations – see Figure 13 of the appendix. These experiments show that the toxicity of LMs varies across different prompts, while model internals remain more stable. These results expand previous work about the crucial entanglement of model behavior and specific instructions (Mizrahi et al., 2024; Sclar et al., 2024). Our results show that this variance is visible beyond taskspecific evaluation, and that, in contrast, model internals reveal fewer deviations.

7.3 Case Study: Model Quantization

We also study whether evaluating model internals and behavior vary when we apply quantization methods to improve efficiency – see Figure 14 of the appendix. We find that both behavioral and internal results remain valid and consistent, as we found only minor deviations when comparing *full precision* with *half* and *four bit* precision.

7.4 Case Study: Pre-Training Dynamics

We analyze how model behavior and internals evolve during pre-training by studying six pretraining checkpoints of OLMo (Groeneveld et al., 2024) - see Figure 12 of the appendix. These results show that early in training (100K steps), models are close to their final toxicity and information strength regarding toxic language. Afterward, we mainly see improvements in the clarity of the information strength, with lower standard deviations across folds and seeds after 100K steps. These observations suggest that *aligned probing* can effectively monitor pre-training dynamics.

8 Related Work

Toxicity of Language Models Work on language model toxicity primarily focuses on evaluating and modifying model behavior by analyzing inputs and outputs (Gallegos et al., 2024). For instance, Gehman et al. (2020) examine toxicity in generations given English prompts, while de Wynter et al. (2024) and Jain et al. (2024) extend this to multilingual settings. Wen et al. (2023) go beyond overt toxicity, investigating implicit toxicity that is harder for automatic classifiers to detect. Another line of research explores the origins of toxicity in LMs by analyzing training data. Gehman et al. (2020) highlight the prevalence of toxic content in pre-training corpora, and Longpre et al. (2024) show that filtering for quality and toxicity can paradoxically lead to toxic degeneration and poor generalization. Unlike these works, we comprehensively evaluate LMs by relating the study of their behavior and model internals, with different types of toxic language.

Studying Model Internals Recent interpretability research has begun probing toxicity within model internals. Ousidhoum et al. (2021) first explored this by using masked language models. More recent work analyzes and mitigates toxicity via model merging (Yang et al., 2024), direct preference optimization (DPO) (Lee et al., 2024; Li et al., 2024), and knowledge editing (Wang et al., 2024). Methods such as linear probing, activation analysis, and causal interventions have been used to study toxicity mitigation in both English (Lee et al., 2024) and multilingual models (Li et al., 2024). While we adopt similar methods, we contribute a new framework, *aligned probing*, to trace toxicity through model internals, enabling a deeper understanding of how input toxicity is entangled with subsequent model behavior.

957

962

967

969

970

971

987

990

991

992

994

Probing Our approach builds on classifier-based probing, which has been widely studied (Belinkov, 2022). Probing classifiers can be difficult to interpret, leading to refinements such as control tasks (Hewitt and Liang, 2019; Ravichander et al., 2021), fine-tuning probes (Mosbach et al., 2020), information-theoretic perspectives (Voita and Titov, 2020), and behavioral explanations (Elazar et al., 2021). While our study focuses on toxicity, probing has been applied to various linguistic properties, including negation and function words (Kim et al., 2019), grammatical number (Lasri et al., 2022), author demographics (Lauscher et al., 2022), language identity (Srinivasan et al., 2023), topic classification (Waldis et al., 2024a), and linguistic competence (Waldis et al., 2024b).

9 Discussion and Conclusion

We present aligned probing, a method to trace text properties from the model input to the output, and connect these findings to subsequent behavior. By applying this method in the context of toxicity, we evaluate over 20 contemporary models and demonstrate that they substantially encode information about toxic language, which crucially impacts the toxicity of model outputs. Moreover, our results reveal that model behavior strongly relies on the toxicity of the input, and model internals strongly encode and propagate information about this input toxicity. With this substantial dependence on the properties of the input text, we identify a crucial dilemma of generative models: We expect them to generate a semantically relevant output given an input prompt without considering unwanted properties, such as toxicity. Pursuing this thought towards more controllable text generation, we plan to apply *aligned probing* to analyze other aspects of generation, like stereotypical formulations, and examine the nature of other mitigation methods such as model merging.

References

1007

1017

1041

1042

1044

- Viraat Aryabumi, John Dang, Dwarak Talupuru, Saurabh Dash, David Cairuz, Hangyu Lin, Bharat Venkitesh, Madeline Smith, Jon Ander Campos, Yi Chern Tan, Kelly Marchisio, Max Bartolo, Sebastian Ruder, Acyr Locatelli, Julia Kreutzer, Nick Frosst, Aidan N. Gomez, Phil Blunsom, Marzieh Fadaee, and 2 others. 2024. Aya 23: Open weight releases to further multilingual progress. *CoRR*, abs/2405.15032.
 - Yonatan Belinkov. 2022. Probing classifiers: Promises, shortcomings, and advances. *Computational Linguistics*, 48(1):207–219.
 - Leonard Bereska and Efstratios Gavves. 2024. Mechanistic interpretability for AI safety - A review. *CoRR*, abs/2404.14082.
 - Amanda Cercas Curry, Gavin Abercrombie, and Zeerak Talat. 2024. Subjective isms? on the danger of conflating hate and offence in abusive language detection. In *Proceedings of the 8th Workshop on Online Abuse and Harms (WOAH* 2024), pages 275–282, Mexico City, Mexico. Association for Computational Linguistics.
 - Tyler A. Chang and Benjamin K. Bergen. 2024. Language model behavior: A comprehensive survey. *Computational Linguistics*, 50(1):293– 350.
 - Adrian de Wynter, Ishaan Watts, Nektar Ege Altintoprak, Tua Wongsangaroonsri, Minghui Zhang, Noura Farra, Lena Baur, Samantha Claudet, Pavel Gajdusek, Can Gören, Qilong Gu, Anna Kaminska, Tomasz Kaminski, Ruby Kuo, Akiko Kyuba, Jongho Lee, Kartik Mathur, Petter Merok, Ivana Milovanovic, and 14 others. 2024. RTP-LX: can llms evaluate toxicity in multilingual scenarios? *ArXiv preprint*, abs/2404.14397.
 - Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav Goldberg. 2021. Amnesic probing: Behavioral explanation with amnesic counterfactuals. *Transactions of the Association for Computational Linguistics*, 9:160–175.
 - Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow, Md Mehrab Tanjim, Sungchul Kim, Franck Dernoncourt, Tong Yu, Ruiyi Zhang, and Nesreen K. Ahmed. 2024. Bias and fairness in large

language models: A survey. *Computational Linguistics*, 50(3):1097–1179.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. 2020. RealToxicityPrompts: Evaluating neural toxic degeneration in language models. In *Findings of the Association for Computational Linguistics: EMNLP 2020*, pages 3356–3369, Online. Association for Computational Linguistics.

1057

- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, and 542 others. 2024. The Ilama 3 herd of models.
- Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel, and 24 others. 2024. OLMo: Accelerating the science of language models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics* (Volume 1: Long Papers), pages 15789–15809, Bangkok, Thailand. Association for Computational Linguistics.
- Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar. 2022. ToxiGen: A large-scale machinegenerated dataset for adversarial and implicit hate speech detection. In *Proceedings of the* 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3309–3326, Dublin, Ireland. Association for Computational Linguistics.
- John Hewitt and Percy Liang. 2019. Designing and interpreting probes with control tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2733–2743, Hong Kong, China. Association for Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The curious case of neural text degeneration. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

1100

1101

1102

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1147

1148

1149

- Jennifer Hu and Roger Levy. 2023. Prompting is not a substitute for probability measurements in large language models. In *Proceedings of the* 2023 Conference on Empirical Methods in Natural Language Processing, pages 5040–5060, Singapore. Association for Computational Linguistics.
- Devansh Jain, Priyanshu Kumar, Samuel Gehman, Xuhui Zhou, Thomas Hartvigsen, and Maarten Sap. 2024. Polyglotoxicityprompts: Multilingual evaluation of neural toxic degeneration in large language models. *ArXiv preprint*, abs/2405.09373.
- Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2023. Mistral 7b. ArXiv preprint, abs/2310.06825.
- Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia, Alex Wang, Tom McCoy, Ian Tenney, Alexis Ross, Tal Linzen, Benjamin Van Durme, Samuel R. Bowman, and Ellie Pavlick. 2019.
 Probing what different NLP tasks teach machines about function word comprehension.
 In Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019), pages 235–249, Minneapolis, Minnesota. Association for Computational Linguistics.
- Sachin Kumar, Vidhisha Balachandran, Lucille Njoo, Antonios Anastasopoulos, and Yulia Tsvetkov. 2023. Language generation models can cause harm: So what can we do about it? an actionable survey. In *Proceedings of the* 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 3299–3321, Dubrovnik, Croatia. Association for Computational Linguistics.

Karim Lasri, Tiago Pimentel, Alessandro Lenci, Thierry Poibeau, and Ryan Cotterell. 2022.
Probing for the usage of grammatical number. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8818–8831, Dublin, Ireland. Association for Computational Linguistics. 1150

1151

1152

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

- Anne Lauscher, Federico Bianchi, Samuel R. Bowman, and Dirk Hovy. 2022. SocioProbe: What, when, and where language models learn about sociodemographics. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pages 7901– 7918, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.
- Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wattenberg, Jonathan K. Kummerfeld, and Rada Mihalcea. 2024. A mechanistic understanding of alignment algorithms: A case study on DPO and toxicity. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. Open-Review.net.
- Xiaochen Li, Zheng Xin Yong, and Stephen Bach. 2024. Preference tuning for toxicity mitigation generalizes across languages. In *Findings* of the Association for Computational Linguistics: EMNLP 2024, pages 13422–13440, Miami, Florida, USA. Association for Computational Linguistics.
- Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson, and 31 others. 2023. Holistic evaluation of language models. *Trans. Mach. Learn. Res.*, 2023.
- Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny Zhou, Jason Wei, Kevin Robinson, David Mimno, and Daphne Ippolito. 2024. A pretrainer's guide to training data: Measuring the effects of data age, domain coverage, quality, & toxicity. In *Proceedings of the 2024 Conference of the North American Chapter of the*

Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 3245–3276, Mexico City, Mexico. Association for Computational Linguistics.

- Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
- Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror, Dafna Shahaf, and Gabriel Stanovsky. 2024. State of what art? a call for multi-prompt LLM evaluation. *Transactions of the Association for Computational Linguistics*, 12:933– 949.

1211

1216

1217

1218

1219

1221

1223

1227

1228

1232

1241

1242

1244

- Marius Mosbach, Vagrant Gautam, Tomás Vergara Browne, Dietrich Klakow, and Mor Geva. 2024. From insights to actions: The impact of interpretability and analysis research on NLP. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 3078–3105, Miami, Florida, USA. Association for Computational Linguistics.
- Marius Mosbach, Anna Khokhlova, Michael A. Hedderich, and Dietrich Klakow. 2020. On the interplay between fine-tuning and sentencelevel probing for linguistic knowledge in pretrained transformers. In *Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP*, pages 68–82, Online. Association for Computational Linguistics.
- Gianluca Nogara, Francesco Pierri, Stefano Cresci, Luca Luceri, Petter Törnberg, and Silvia Giordano. 2023. Toxic bias: Perspective API misreads german as more toxic. *CoRR*, abs/2312.12651.
- Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri, and 21 others. 2025. 2 olmo 2 furious.
- Nedjma Ousidhoum, Xinran Zhao, Tianqing Fang, Yangqiu Song, and Dit-Yan Yeung. 2021. Probing toxic content in large pre-trained language

models. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4262–4274, Online. Association for Computational Linguistics.

1257

1268

1275

1280

- Pia Pachinger, Allan Hanbury, Julia Neidhardt, and Anna Planitzer. 2023. Toward disambiguating the definitions of abusive, offensive, toxic, and uncivil comments. In Proceedings of the First Workshop on Cross-Cultural Considerations in NLP (C3NLP), pages 107–113, Dubrovnik, Croatia. Association for Computational Linguistics.
- Luiza Pozzobon, Beyza Ermis, Patrick Lewis, and Sara Hooker. 2023. On the challenges of using black-box apis for toxicity evaluation in research. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pages 7595–7609. Association for Computational Linguistics.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea Finn. 2023. Direct preference optimization: Your language model is secretly a reward model. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023.
- Abhilasha Ravichander, Yonatan Belinkov, and Eduard Hovy. 2021. Probing the probing paradigm: Does probing accuracy entail task relevance? In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 3363–3377, Online. Association for Computational Linguistics.
- Maarten Sap, Swabha Swayamdipta, Laura Vianna, Xuhui Zhou, Yejin Choi, and Noah A. Smith. 2022. Annotators with attitudes: How annotator beliefs and identities bias toxic language detection. In *Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 5884–

5906, Seattle, United States. Association for

Naomi Saphra and Sarah Wiegreffe. 2024. Mech-

boxNLP Workshop: Analyzing and Interpret-

ing Neural Networks for NLP, pages 480-498,

Miami, Florida, US. Association for Computa-

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and

Alane Suhr. 2024. Quantifying language mod-

els' sensitivity to spurious features in prompt

design or: How i learned to start worrying about

Govindarajan, and Kyle Mahowald. 2023.

Counterfactually probing language identity in

multilingual models. In Proceedings of the

3rd Workshop on Multi-lingual Representation

Learning (MRL), pages 24-36, Singapore.

Association for Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick.

2019a. BERT rediscovers the classical NLP

pipeline. In Proceedings of the 57th Annual

Meeting of the Association for Computational

Linguistics, pages 4593-4601, Florence, Italy.

Association for Computational Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,

Adam Poliak, R. Thomas McCoy, Najoung

Kim, Benjamin Van Durme, Samuel R. Bow-

man, Dipanjan Das, and Ellie Pavlick. 2019b.

What do you learn from context? probing for

sentence structure in contextualized word representations. In 7th International Conference

on Learning Representations, ICLR 2019, New

Orleans, LA, USA, May 6-9, 2019. OpenRe-

Hugo Touvron, Louis Martin, Kevin Stone, Pe-

ter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal

Bhargava, Shruti Bhosale, Dan Bikel, Lukas

Blecher, Cristian Canton-Ferrer, Moya Chen,

Guillem Cucurull, David Esiobu, Jude Fernan-

des, Jeremy Fu, Wenyin Fu, and 49 others.

2023. Llama 2: Open foundation and fine-tuned

In Proceedings of the 7th Black-

Venkata Subrahmanyan

Computational Linguistics.

prompt formatting. In ICLR.

anistic?

tional Linguistics.

Anirudh Srinivasan,

view.net.

1305

1316 1317

1318

1319

1323

- 1327
- 1328

1332

1337

1341

1344

1342

chat models. ArXiv preprint, abs/2307.09288. Elena Voita and Ivan Titov. 2020. Informationtheoretic probing with minimum description length. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 183-196, Online. Association for Computational Linguistics.

1352

1357

1358

1368

1370

1371

1375

1385

1391

- Andreas Waldis, Yufang Hou, and Iryna Gurevych. 2024a. Dive into the chasm: Probing the gap between in- and cross-topic generalization. In Findings of the Association for Computational Linguistics: EACL 2024, pages 2197-2214, St. Julian's, Malta. Association for Computational Linguistics.
- Andreas Waldis, Yotam Perlitz, Leshem Choshen, Yufang Hou, and Iryna Gurevych. 2024b. Holmes: A benchmark to assess the linguistic competence of language models. Transactions of the Association for Computational Linguistics, 12:1616–1647.
- Mengru Wang, Ningyu Zhang, Ziwen Xu, Zekun Xi, Shumin Deng, Yunzhi Yao, Qishen Zhang, Linyi Yang, Jindong Wang, and Huajun Chen. 2024. Detoxifying large language models via knowledge editing. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3093-3118, Bangkok, Thailand. Association for Computational Linguistics.
- Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and Samuel R. Bowman. 2020. BLiMP: The benchmark of linguistic minimal pairs for English. Transactions of the Association for Computational Linguistics, 8:377–392.
- Zeerak Waseem. 2016. Are you a racist or am I seeing things? annotator influence on hate speech detection on Twitter. In Proceedings of the First Workshop on NLP and Computational Social Science, pages 138–142, Austin, Texas. Association for Computational Linguistics.
- Zeerak Waseem, Thomas Davidson, Dana Warmsley, and Ingmar Weber. 2017. Understanding abuse: A typology of abusive language detection subtasks. In Proceedings of the First Workshop on Abusive Language Online, pages 78-84, Vancouver, BC, Canada. Association for Computational Linguistics.
- Jiaxin Wen, Pei Ke, Hao Sun, Zhexin Zhang, Chengfei Li, Jinfeng Bai, and Minlie Huang.

1400	2023. Unveiling the implicit toxicity in large	1450
1401	language models. In Proceedings of the 2023	1451
1402	Conference on Empirical Methods in Natural	1452
1403	Language Processing, pages 1322-1338, Sin-	1453
1404	gapore. Association for Computational Linguis-	1454
1405	tics.	1455
1406	Peter West Viming Lu Nouha Dziri Faeze	1456
1407	Brahman Linije Li Jena D Hwang Liwei	1457
1408	Jiang Jillian Fisher Abhilasha Ravichander	1458
1409	Khvathi Raghavi Chandu, Benjamin Newman.	1459
1410	Pang Wei Koh, Allyson Ettinger, and Yejin	1460
1411	Choi. 2024. The generative AI paradox: "what	1461
1412	it can create, it may not understand". In The	1462
1413	Twelfth International Conference on Learning	1463
1414	Representations, ICLR 2024, Vienna, Austria,	1464
1415	May 7-11, 2024. OpenReview.net.	1465
1416	Ennang Vang Li Shan Cuibing Cua Vinguai	1466
1417	Wang Viacehun Cao, Jia Zhang, and Dachang	1467
1418	Tao 2024 Model merging in llms mllms and	1468
1419	beyond: Methods theories applications and	1469
1420	opportunities ArXiv preprint abs/2408 07666	1470
1421		1471
1422		1472
1423		1473
1424		1474
1425		1475
1426		1476
1427		1477
1428		1478
1429		1479
1430		1480
1431		1481
1432		1482
1433		1483
1434		1484
1430		1400
1430		1480
1437		1407
1430		1400
1439		1403
1//1		1/01
1//12		1/02
1442		1/02
1444		1433
1445		1434
1446		1000 1001
1447		1/430
1448		1/09
1449		1/00
		1400

A Appendix

1518

1519

1541

1542

1544

A.1 Limitations

Classifying Toxicity Detecting toxicity is a nontrivial task as conceptualizations, datasets, and annotator attitudes can vary widely (Waseem, 2016; Waseem et al., 2017; Sap et al., 2022; Pachinger et al., 2023; Cercas Curry et al., 2024). Moreover, toxicity - as with most linguistic properties is highly contextual and can be implicit, making it difficult to detect (Wen et al., 2023). Even though we consider fine-grained toxicity attributes, our use of PERSPECTIVE API⁴ and probing classifiers may miss forms of toxicity not represented in upstream datasets, or exhibit biases (Nogara et al., 2023; Pozzobon et al., 2023).

Beyond English Toxicity Due to space constraints, we only demonstrate *aligned probing* with English toxicity in this paper, but the framework is broad; it can be applied to any language model and any textual property. We emphasize that English toxicity is intended as an example, and other English textual properties may be encoded and propagated differently from input to output through model internals. Additionally, evaluations of toxicity in non-English languages are also influenced by whether the data is localized to linguistically and culturally appropriate examples and can still be affected by English pretraining data (Jain et al., 2024).

Probing Classifiers One of the fundamental problems with using probing classifiers is their limited utility for model explainability. In other words, just because a model's representations are predictive of a property does not mean that the model is using it (Ravichander et al., 2021; Elazar et al., 2021; Belinkov, 2022). We address this limitation by correlating probing performance with actual toxic behavior when presenting our results, by running causal analyses in addition to correlative analyses, by using control tasks (Hewitt and Liang, 2019) and evaluating our probing setup from an information theory perspective (Voita and Titov, 2020). In future applications of aligned probing to other text properties, it is important to contextualize results with these checks as we do.

A.2 Experimental Details

Probing Hyperparameters We use fixed hyperparameters for training the probes following previous work (Hewitt and Liang, 2019; Voita and Titov, 2020). Specifically, we train for 20 epochs, selecting the optimal one based on development instances. We use AdamW (Loshchilov and Hutter, 2019) as the optimizer, with a batch size of 16, a learning rate of 0.001, a dropout rate of 0.2, and a warmup phase covering 10% of the total steps. Additionally, we set the random seeds to [0, 1, 2, 3, 4].

Hardware All experiments are conducted on 20 Nvidia RTX A6000 GPUs. Each GPU is equipped with 48GB of memory and 10,752 CUDA cores.

Considered LMs Table 4 provides an overview of the language models considered in this study.

⁴An industry standard API providing high performance in toxicity detection, see results online.

Confidential TACL submission. DO NOT DISTRIBUTE.

Model	Huggingface Tag	Paramatars	Pro Training Tokons
OI Mo 5k (Grooppyeld at al. 2024)	allopai/OI Mo 7P hf	7 billion	
OLMo-3k (Groeneveld et al., 2024) OLMo-100k (Groeneveld et al., 2024)	allenai/OLMo-7B-hf	7 billion 7 billion	0.331 tokens 0 7T tokens
OLMo-200k (Groeneveld et al., 2024)	allenai/OLMo-7B-hf	7 billion	1.05T tokens
OLMo-300k (Groeneveld et al., 2024)	allenai/OLMo-7B-hf	7 billion	1.4T tokens
OLMo-400k (Groeneveld et al., 2024)	allenai/OLMo-7B-hf	7 billion	1.75T tokens
OLMo-500k (Groeneveld et al., 2024)	allenai/OLMo-7B-hf	7 billion	2.1T tokens
OLMo (Groeneveld et al., 2024)	allenai/OLMo-7B-hf	7 billion	2.5T tokens
OLMo-Instruct (Groeneveld et al., 2024)	allenai/OLMo-7B-Instruct-hf	7 billion	2.5T tokens + 381k instructions
OLMo-2 (OLMo et al., 2025)	allenai/OLMo-2-1124-7B	7 billion	4.1T tokens
OLMo-2-Instruct (OLMo et al., 2025)	allenai/OLMo-2-1124-7B-Instruct	7 billion	4.1T tokens + 367k instructions
Llama-2 (Touvron et al., 2023)	meta-llama/Llama-2-7b-hf	7 billion	2T tokens
Llama-2-Chat (Touvron et al., 2023)	meta-llama/Llama-2-7b-chat-hf	7 billion	2T tokens + 1.4M instructions
Llama-2-Detox (Rafailov et al., 2023)	BatsResearch/llama2-7b-detox-qlora	7 billion	2T tokens + 25k demonstrations
Llama-3 (Grattafiori et al., 2024)	meta-llama/Meta-Llama-3-8B-Instruct	8 billion	15T+ tokens
Llama-3-Instruct (Grattafiori et al., 2024)	meta-llama/Meta-Llama-3-8B-Instruct	8 billion	15T+ tokens + unknown instructions
Llama-3-Detox (Rafailov et al., 2023)	BatsResearch/llama3-8b-detox-qlora	8 billion	15T+ tokens + 25k demonstrations
Llama-3.1 (Grattation et al., 2024)	meta-Ilama/Llama-3.1-8B	8 billion	151 + tokens
Mistrol v0.2 (Kong et al. 2022)	meta-Itama/Liama-5.1-8B-Instruct	8 Dillion	15+ tokens + unknown instructions
Mistral-v0.3 (Julig et al., 2023) Mistral-v0.3-Instruct (Jiang et al., 2023)	mistralai/Mistral-7B-Instruct-v0.3	7 billion	unknown
Ava-23 (Arvabumi et al 2024)	CohereForAI/ava-23-8B	8 billion	unknown + 5.7M instructions
Aya-23-Detox (Rafailov et al., 2023)	BatsResearch/aya-23-8b-detox-alora	8 billion	unknown + $5.7M$ instructions + $25k$ demonstrations
	q.o.u		
Table 4: Overview of the evalu	ated models and information a	bout the p	re-training and instruction-tuning data
	and models and mornation	e out uie p	the more and more determining data.

Your task is to complete the given text without explanation. Text: {Text} Complete the following text without explanation. Text: {Text} Complete a given text without explanation. Text: {Text} Complete the following text without explanation. Text: {Text}

Table 5: The four prompts we used for the multiprompt evaluation.

	Max. To	x. (EMT)	Tox. Corr. (TC)		
Attribute (a)	Toxic	Not Toxic	Toxic	Not Toxic	
OLMo	$0.58_{\pm 0.24}$	$0.25_{-0.03}$	$0.22_{\pm 0.26}$	$0.40_{\pm 0.32}$	
OLMo-Instruct	$0.42_{\pm 0.08}$	$0.08_{-0.20}$	$0.22_{\pm 0.26}$	$0.52_{\pm 0.44}$	
OLMo-2	$0.63_{\pm 0.29}$	$0.25_{-0.03}$	$0.28_{+0.32}$	$0.42_{\pm 0.34}$	
OLMo-2-Instruct	$0.36_{\pm 0.02}$	$0.08_{-0.20}$	$0.06_{\pm 0.10}$	$0.59_{\pm 0.51}$	
Llama-2	$0.63_{\pm 0.29}$	$0.25_{-0.03}$	$0.31_{\pm 0.35}$	$0.40_{+0.32}$	
Llama-2-Chat	$0.21_{-0.13}$	$0.09_{-0.19}$	$0.13_{\pm 0.17}$	$0.41_{-0.33}$	
Llama-3	$0.63_{\pm 0.29}$	$0.25_{-0.03}$	$0.31_{\pm 0.35}$	$0.41_{\pm 0.33}$	
Llama-3-Instruct	$0.38_{\pm 0.04}$	$0.09_{-0.19}$	$0.09_{\pm 0.13}$	$0.57_{\pm 0.49}$	
Llama-3.1	$0.62_{\pm 0.28}$	$0.25_{-0.03}$	$0.31_{\pm 0.35}$	$0.41_{+0.33}$	
Llama-3.1-Instruct	$0.35_{\pm 0.01}$	$0.08_{-0.20}$	$0.03_{\pm 0.07}$	$0.57_{\pm 0.49}$	
Mistral-v0.3	$0.62_{\pm 0.28}$	$0.25_{-0.03}$	$0.31_{\pm 0.35}$	$0.39_{\pm 0.31}$	
Mistral-v0.3-Instruct	$0.25_{-0.09}$	$0.07_{-0.21}$	$0.12_{\pm 0.16}$	$0.44_{\pm 0.36}$	

1707

1740

1741

1742

1744

Table 6: Detailed behavioral results of the main pretrained and instruction-tuned models we consider.

Figure 10: *IT* LMs (blue line) frequently generate template text like *as a helpful assistant*. Therefore, it remains unclear to what extent the mitigation of toxic language is due to this non-toxic templatic text. Thus, we gradually remove generations potentially containing such passages, represented by particularly frequent five-grams. This figure shows toxicity increases when we gradually increase generations containing such top-k five grams (blue line). As this increase does not reach the toxicity of pre-trained LMs (red line), we can assume that instruction-tuning effectively aligns LMs with the implicit preference for less toxic language.

Figure 11: Comparison of how strongly the internal representations of pre-trained and detoxified models encode the number of words in the input within the input internals (h_I) . We observe that detoxification via DPO results in a substantial loss of information related to this surface property, indicating that DPO has a significant impact on model internals beyond merely reducing toxicity.

Case Study 1: Detoxification

a. Behavioral Results

	Max. 1	Fox. (<mark>EMT</mark>)	Tox. Corr. (TC)		
Attribute (a)	Toxic	Not Toxic	Toxic	Not Toxic	
Llama-2	0.63	0.25	0.31	0.40	
Llama-2-Chat	0.21	0.09	0.13	0.41	
Llama-2-Detox	0.33	0.12	0.02	0.42	
Llama-3	0.63	0.25	0.31	-0.41	
Llama-3-Instruct	0.38	0.09	0.09	0.57	
Llama-3-Detox	0.29	0.09	0.13	0.40	
Aya-23	$\bar{0.37}$	0.14	0.00	$\bar{0.39}$	
Ava-23-Detox	0.18	0.05	0.00	0.40	

Figure 12: In this first case study, we examine how behavior (upper table **a**.) and internal representations (lower figure b.) of LMs change when detoxified via DPO (Rafailov et al., 2023). Therefore, we rely on the detoxified versions of Llama-2, Llama-3, and Aya-23, provided by Li et al. (2024), and compare them with their original counterparts. Focusing on the behavioral results (a.), we see the expected drop in toxicity among all the models, for example when comparing Llama-2 with Llama-2-Detox. Note that since Aya-23 is already instruction-tuned, its general toxicity level is already lower than the pre-trained models *Llama-2* and Llama-3. Interestingly and aligned with results of § 5.1, instruction-tuning can reduce the toxicity level of LMs to a similar level as detoxified ones, particularly for not toxic prompts. Analyzing how detoxification impacts internal representations of LMs (b.) reveals a substantial information loss across all layers and probing scenarios. As this information loss also occurs for surface properties, like input length in Figure 11, we see DPO impacting internal representations of LMs beyond the target property (toxicity in text). Moreover, the particularly pronounced information loss in the upper layers suggests that DPO has more of a superficial impact on LMs, allowing them to be easily unaligned (Lee et al., 2024).

	~	

30	3		
30	4		

Model		Identity Attack Insult Profanity Sexually Explicit Threat General Toxicity										
	Toxic	Not Toxic	Toxic	Not Toxic	Toxic	Not Toxic	Toxic	Not Toxic	Toxic	Not Toxic	Toxic	Not Toxi
OLMo-Instruct	$0.53_{\pm 0.03}$	$0.22_{\pm 0.01}$	$0.46_{\pm 0.05}$	$0.12_{\pm 0.0}$	$0.5_{\pm 0.03}$	$0.14_{\pm 0.0}$	$0.57_{\pm 0.02}$	$0.11_{\pm 0.0}$	$0.48_{\pm 0.03}$	$0.08_{\pm 0.0}$	$0.43_{\pm 0.03}$	$0.08_{\pm 0.0}$
OLMo-2-Instruct	$0.57_{\pm 0.03}$	$0.26_{\pm 0.02}$	$0.54_{\pm 0.06}$	$0.14_{\pm 0.02}$	$0.5_{\pm 0.04}$	$0.16_{\pm 0.02}$	$0.6_{\pm 0.03}$	$0.13_{\pm 0.02}$	$0.47_{\pm 0.01}$	$0.11_{\pm 0.01}$	$0.47_{\pm 0.02}$	$0.12_{\pm 0.0}$
Llama-2-chat	$0.27_{\pm0.03}$	$0.24_{\pm0.02}$	$0.13_{\pm0.02}$	$0.11_{\pm0.01}$	$0.19_{\pm 0.03}$	$0.13_{\pm0.01}$	$0.12_{\pm 0.04}$	$0.08_{\pm0.01}$	$0.11_{\pm0.01}$	$0.05_{\pm0.01}$	$0.1_{\pm 0.02}$	$0.08_{\pm 0.0}$
Llama-3-Instruct	$0.52_{\pm0.01}$	$0.27_{\pm0.0}$	$0.43_{\pm0.03}$	$0.13_{\pm0.0}$	$0.46_{\pm 0.01}$	$0.17_{\pm0.0}$	$0.51_{\pm 0.01}$	$0.11_{\pm 0.0}$	$0.38_{\pm0.01}$	$0.09_{\pm 0.0}$	$0.45_{\pm 0.01}$	$0.13_{\pm 0.5}$
Llama-3.1-Instruct	$0.5_{\pm 0.07}$	$0.26_{\pm0.01}$	$0.42_{\pm0.09}$	$0.13_{\pm 0.01}$	$0.44_{\pm 0.08}$	$0.15_{\pm0.01}$	$0.54_{\pm 0.06}$	$0.12_{\pm 0.01}$	$0.38_{\pm 0.08}$	$0.1_{\pm 0.01}$	$0.43_{\pm 0.07}$	$0.13_{\pm0.0}$
Mistral-v0.3-Instruct	$0.4_{\pm 0.02}$	$0.2_{\pm 0.01}$	$0.26_{\pm0.02}$	$0.1_{\pm 0.0}$	$0.35_{\pm 0.03}$	$0.11_{\pm 0.0}$	$0.44_{\pm 0.03}$	$0.09_{\pm0.0}$	$0.36_{\pm0.04}$	$0.07_{\pm 0.0}$	$0.37_{\pm0.03}$	$0.07_{\pm 0.0}$
			atio I Iay	0.02			_ <u>_</u>					
			atio lay	0.02			_ <u>+</u>					
			evi de	0.015	•							
			Q e		Т	—						
			Zã∠	0.01								
			ç d	0.005								
			sta r e									
			v <u>e</u>	0								

Figure 13: With this case study, we study how the behavior (**a**.) and internal representations (**b**.) of LMs vary when we prompt them to continue a given text with four different prompt formulations (Table 5). Specifically, we study the following instruction-tuned models: *OLMo-Instruct, OLMo-2-Instruct, Llama-2-Chat, Llama-3-Instruct, Llama-3.1-Instruct*, and *Mistral-v0.3-Instruct*, Evaluating the behavior (**a**.) reveals substantial deviation across these four prompt formulations for *toxic* prompts, particularly for *Llama-3.1-Instruct* with up to ± 0.09 for *Insult*. Simultaneously, studying the internal representations (**b**.) reveals a less pronounced effect, from negligible information deviations (~ 0.02) when testing the toxicity of the output within the input internals ($\exists nput$). These results suggest that information about the toxicity of the input within the input internals is relatively stably encoded, and the less stable information within output internals reflects the variation in the model outputs.

Case Study 3: Model Quantization

	Identity Attack		Insult		Pr	Profanity S		Sexually Explicit		Threat		General Toxicity	
Model	Toxic	Not Toxic	Toxic	Not Toxic	Toxic	Not Toxic	Toxic	Not Toxic	Toxic	Not Toxic	Toxic	Not Toxic	
OLMo-Full	0.54	0.18	0.53	0.26	0.57	0.24	0.65	0.20	0.52	0.20	0.64	0.38	
OLMo-Half	0.55	0.18	0.54	0.26	0.57	0.24	0.65	0.20	0.53	0.20	0.64	0.38	
OLMo-Four-Bit	0.53	0.18	0.54	0.26	0.58	0.24	0.65	0.20	0.52	0.20	0.65	0.38	

b. Internal Results

Figure 14: This third case study examines the effect of model quantization on model behavior and internal representations in the context of toxicity, focusing on the pre-trained *OLMo* model. Specifically, we compare the *Full* version with the *Half* and *Four-Bit* precision, quantized using the hugging face library document online. This analysis reveals neglectable differences for the behavioral (**a**.) and internal (**b**.) perspective. These results demonstrate behavioral and internal evaluations in the context of toxicity remain valid under model quantization, enabling more efficient experiments with smaller hardware requirements.

Case Study 4: Pre-Training Dynamics

a. Behavioral Results

	Identity Attack		Insult		Profanity		Sexually Explicit		Threat		General Toxicity	
Model	Toxic	Not Toxic	Toxic	Not Toxic	Toxic	Not Toxic	Toxic	Not Toxic	Toxic	Not Toxic	Toxic	Not Toxic
OLMo-5k	0.56	0.36	0.47	0.23	0.43	0.24	0.61	0.21	0.45	0.16	0.48	0.21
OLMo-100k	0.63	0.37	0.57	0.23	0.52	0.25	0.65	0.2	0.53	0.17	0.53	0.2
OLMo-200k	0.64	0.37	0.58	0.24	0.53	0.26	0.66	0.2	0.53	0.18	0.53	0.2
OLMo-300k	0.63	0.37	0.56	0.23	0.52	0.25	0.66	0.2	0.54	0.18	0.53	0.2
OLMo-400k	0.64	0.38	0.57	0.24	0.54	0.26	0.66	0.2	0.54	0.18	0.52	0.2
OLMo-500k	0.64	0.37	0.58	0.24	0.53	0.26	0.67	0.2	0.54	0.17	0.52	0.2
OLMo-Full	0.64	0.38	0.57	0.24	0.54	0.26	0.66	0.2	0.54	0.18	0.52	0.2

1906 1907

1918

1919

1941

1948

Figure 15: With this last case study, we analyze how model behavior (**a**.) and internals (**b**.) change during pretraining regarding toxicity. Therefore, we evaluate six intermediate checkpoints of the *OLMo* pre-training process. Notable, we find only small changes for the behavioral and internal perspective after 100K training steps. These results suggest that the early pre-training stage is crucial for the toxicity of LMs and their encoded information about the toxic language. After these 100K steps, we mainly observe that the encoding strength of toxic language gets clearer, as the standard deviation across multiple seeds and folds is reduced.

Figure 16: We verify our probing setup by evaluating the *selectivity* of our probes. Following Hewitt and Liang (2019), we train and evaluate every probe once with the true label (toxicity score t in this work) and once where we randomly shuffle the labels t'. Our results show that we achieve a high selectivity, as the gap between the results of true labels (upper line) and random labels (lower line) is big, indicating that the probe cannot learn random signals. These results justify the usage of linear probes as sensors to approximate information for our evaluations.

Figure 17: We further verify our probing setups and evaluate the compression of our probes (Voita and Titov, 2020), indicating how well information can be compressed. When compression is high, we assume strong patterns in the internal representations. These results show a similar trend to our results of an information peak in early layers, further justifying our probing setup.

1957